• Title/Summary/Keyword: Critical speed

Search Result 1,483, Processing Time 0.03 seconds

Soil and Slab Track Interaction (지반과 슬래브궤도의 상호작용)

  • Kang, Bo-Soon;Hwang, Seong-Chun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.334-339
    • /
    • 2002
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loading reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanismen and speed of the train. These loads can be used for the dimensioning of the track as well as for prognosis of the vibrations at the track and the surrounding soil.

  • PDF

Soil and Track Interaction under Railway Loads (열차하중에 대한 지반-제도의 상호작용)

  • Kang Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.116-121
    • /
    • 2005
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loading reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanismen and speed of the train. These loads can be used for the dimensioning of the track as well as far the prognosis of the vibrations at the track and the surrounding soil.

Development of Flexible Rotor Systems For Gas Turbine Engine (위험속도를 통과하는 회전체시스템 개발)

  • Lee, J.H.;Lee, Y.S.;Kim, K.S.;Kim, C.G.;Kim, M.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1065-1070
    • /
    • 2000
  • High speed rotor test rig was developed for flexible rotor systems which have its bending critical speed at 14000 rpm. In designing the flexible rotor systems, operating speed have to be escaped from the critical speed, due to large vibration. In this paper, dynamic characteristics of the rotor systems were analyzed and compared with test results. And the effect of allison ring damper and rotor balancing were examined both theoretically and experimentally. Finally, the magnitude of vibration was largely reduced at the critical speed.

  • PDF

Numerical Investigation on Vibrations due to Railway Loads on Slab Tacks (슬래브 궤도에서 열차하중으로 인한 진동문제의 수치 해석적 연구)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.91-96
    • /
    • 2003
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loa야ng reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanism and speed of the train. These loads can be used for the dimensioning of the track as well as for the prognosis of the vibrations at the track and the surrounding soil.

  • PDF

Development of Speed Increaser for High Speed Machine Pump which Considered the Noise/Vibration (소음/진동을 고려한 고속머신 펌프용 증속기 개발)

  • 이동환;박노길;김병옥;이형우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.363-369
    • /
    • 2004
  • Vibration/noise analysis as well as strength of gear teeth, roller bearing life. joural bearing design are considered in order to develop the high-speed machine centrifugal pump which had a speed increaser. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors and the transmitted errors of the gearing are considered. shows that. at the operating speed. there are not the critical speed. A high-speed machine centrifugal pump was made in order to evaluate developed speed increaser. Also, strict API standard were introduced for reliability evaluation of developed speed increaser, and performance evaluation were carried out. The result that evaluation items about bearing vibration, shaft vibration, noise, and lubrication temperature were selected, and were tested. a high-speed machine centrifugal pump were able to know what were satisfied with API standard all.

Critical-speed Increase of Optical Disk by Applying Residual Stresses (잔류응력 부과에 의한 광디스크의 임계속도 증가)

  • Kim, Nam Woong;Na, Sang Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2092-2099
    • /
    • 2013
  • Through the data transfer race in industry since 1990s, the operational speed of optical disk drive(ODD) becomes commonly over 10,000 rpm. Such high speed operation inevitably causes the vibration, which is also the disturbances in the read-write process of pick-up servo-controller. Generally the vibration disturbance problem can be solved by the vibration isolation using the rubber mount and the increase of robustness of the pick-up servo-controller. Optical disk itself has not been targeted for the vibration reduction, because it is manufactured under the standardized format. In this paper we focused on the increase of critical speed of optical disk, that is, the improvement of dynamic characteristics, with the control of residual stresses which are come from the injection molding process. To do this, first, the residual stresses induced from the injection molding process are calculated using finite element method. The major design parameters of the process conditions are flow rate and melt temperature, which control the residual stresses in optical disk. Second, the critical speed of optical disk is calculated with modal analysis considering residual stress distributions. It was found out that the critical speed can be improved by the control of operational parameters in the injection molding process.

Calculation of Critical Speed of Railway Vehicle by Multibody Dynamics Analysis (다물체 동역학 해석방법을 이용한 철도차량의 임계속도 계산)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1371-1377
    • /
    • 2013
  • In this analysis, a method is presented to calculate the critical speed of a railway vehicle by using a multibody dynamic model. The contact conditions and contact forces between the wheel and the rail are formularized for the wheelset model. This is combined with the bogie model to obtain a multibody dynamic model of a railway vehicle with constraint conditions. First-order linear dynamic equations with independent coordinates are derived from the constraint equations and dynamic equations of railway vehicles using the QR decomposition method. Critical speeds are calculated for the wheelset and bogie dynamic models through an eigenvalue analysis. The influences of the design parameters on the critical speed are presented.

Critical Speed Analysis of a 7 Ton Class Liquid Rocket Engine Turbopump (7톤급 액체로켓엔진 터보펌프 임계속도 해석)

  • Jeon, Seong-Min;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.11-15
    • /
    • 2012
  • A rotordynamic analysis is performed for a 7 ton class turbopump applied to the third stage LRE(Liquid Rocket Engine) of the KSLV(Korea Space Launch Vehicle). Based on the heritage of the developed experimental 30 ton class turbopump and developing 75 ton class turbopump for the KSLV first and second stage LRE, the 7 ton class turbopump is designed as an one-axis rotor turbopump. Two rotor systems comprised of one oxidizer pump assembly and the other fuel pump-turbine assembly are connected each other using a spline shaft and operating at a design speed. Through the rotordynamic analysis, it is investigated that the turbopump acquires sufficient separate margin of critical speed as a sub-critical rotor.

  • PDF

Vibration Characteristics of High Speed Rotary Bell Cup (고속 회전 벨 컵의 진동 특성)

  • Sohn, Jung Woo;Park, Ji Hoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.771-778
    • /
    • 2015
  • In this work, vibration characteristics of high speed rotary bell cup for paint atomizer are numerically investigated. New type of bell cup model is proposed and additional corresponding models with design parameter variations for length and diameter are constructed. Dynamic characteristics, such as natural frequencies and corresponding mode shapes, are studied for each model as a first step. To investigate operation stability, critical speed of rotary bell cup is numerically analyzed based on Campbell diagram and separation margin between operating speed and critical speed is identified. Unbalance vibration responses are also investigated with respect to design parameter variation, operating speed and balancing quality grade of G. Then the proper design guideline for stable operation of high speed rotary bell cup for paint atomizer is suggested.

Rotordynamic Analysis and Experimental Investigation of the Turbine-Generator System Connected with Magnetic Coupling (마그네틱 커플링으로 연결된 터빈-발전기 시스템의 로터다이나믹 해석 및 실험적 고찰)

  • Kim, Byung Ok;Park, Moo Ryong;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2013
  • This paper deals with the study on the rotordynamic and experimental analysis of turbine-generator system connected with a magnetic coupling. Although magnetic coupling has been used to torque transmission of chemical processing pump rotating at under 3,600rpm, magnetic coupling in this study is applied to high-speed turbine-generator system using a working fluid that is refrigerant such as ammonia or R-124a. Results of rotordynamic design analysis are as follows. The first, shaft diameter nearest to outer hub of magnetic coupling has a big effect on the $1^{st}$ critical speed of generator rotor. The second, if the $1^{st}$ critical speeds of turbine rotor and generator rotor have enough to separation margin in comparison to rated speed, the $1^{st}$ critical speed of turbine-magnetic coupling-generator rotor train has enough to separation margin regardless of connection stiffness of magnetic coupling. The analytical FE model is guaranteed by impact test on the prototype and condition monitoring such as measurements of vibration and bearing temperature is also performed.