• Title/Summary/Keyword: Critical speed

Search Result 1,483, Processing Time 0.029 seconds

A study on the improvement of operation process to lighten duty-load of the critical tasks of KTX train driver (KTX 기장의 직무부하 경감을 위한 운전업무 개선 방안에 대한 연구)

  • Jeon, Young-Rok;Lee, Myung-Gil
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.47-56
    • /
    • 2008
  • This study suggest a way to improve duty process of KTX(Korea Train Express) high-speed train driver. A new operating system which based on safety was introduced to operate high-speed train which travel above 300km/h on the high-speed railroad but below 200km/h on the general railroad. There were some studies on the operation of high-speed train which travel on the high-speed railroad and on the general railroad with safety. However they overlooked the elements of human errors. The duty-load of KTX train driver's 14 basic operation processes was measured using NASA-TLX and found four processes with high duty-load. In this paper, critical tasks of the high duty-load processes are determined using a questionnaire. Some suggestions which include the improvement of facilities, operating system and operating skill are proposed to lighten duty-load of the critical tasks. The validity of the proposed new task processes is demonstrated by making question to KTX train driver. To use this results cost-benefit analysis, hazards analysis etc. should be performed additionally.

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

Rotordynamic Design of Turbine for Large Capacity Pump drive (대용량 펌프 구동용 터빈의 로터다이나믹 설계)

  • 김영춘;박철현;김경웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.116-120
    • /
    • 2003
  • In general, industrial rotating machinery have been designed to have critical speed that is above operating speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed and high performance of rotating machinery. Therefore, it is important to predict the accuracy rotordynamic characteristics of the high speed rotating system in advance. In this paper, the results of rotordynamic analysis about FWP(Feed Water Pump) drive turbine rotor are showed. Because the FWP drive turbine analyzed is high speed machinery operated more than the operation speed of conventional FWP drive turbine, Seismic response analysis as well as unbalance response analysis is done in order to improve the reliability of the new turbine rotor-bearing system.

  • PDF

A Study on the Wheelset Behavior on the Roller Rig for Railway Bogie Testing (대차 주행시험대상에서의 윤축 거동에 대한 연구)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1207-1212
    • /
    • 2007
  • The critical speed of railway bogie related to the stability of the railway rolling-stock is important. Testing of the dynamic performance of bogie is conducted using a roller rig in a laboratory in place of field testing on track. This roller rig is composed of two rollers equivalent to track and used to test the dynamic characteristics of vehicle. But, the geometrical characteristics of the wheel/roller contact on the roller rig are different from those of the wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. This difference has influence on the wheelset behavior and the critical speed of bogie. Therefore in this paper, we have studied the behavior of wheelset and bogie on the roller rig for railway bogie testing with the purpose of developing the scaled roller rig. As an analysis results, it has been shown that the critical speed of bogie on the roller rig is slightly lower than that of bogie on track.

  • PDF

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(Ultra Super Critical) Steam Turbine (550MW급 초초임계압(USC, Ultra Super Critical) 증기터빈의 Spike Vibration 에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.442-447
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed(3,600rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the Lower Half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

  • PDF

Critical Speed Analysis of the Liquid Rocket Turbopump (액체로켓 터보펌프의 임계 속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.92-99
    • /
    • 2005
  • Numerical analyses of critical speed and mass unbalance response are performed for a 30 ton thrust turbopump. The stiffness and damping of ball bearings and non-contact seals are quantified under aerodynamic and hydrodynamic loads induced by a fuel pump and turbine. Critical speed margin and tip displacements of the rotating parts are evaluated using a three-dimensional finite element method. The results are used to ensure the soundness of the rotordynamic design using an one-dimensional transfer matrix method. A further study shows that sufficient resonance margin may be assured via controlling the stiffness of the rotor support by employing an additional elastic ring to the bearing support.

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(ultra super critical) Steam Turbine (550MW급 초초임계압(USC, ultra super critical) 증기터빈의 Spike Vibration에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak;Park, Jong-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1238-1245
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450 rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed (3,600 rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the lower half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

Thermoelastic Instability of the Layer Sliding between Two Rigid Non-conducting Half-planes (단단한 비전도 반평판 사이에서 미끄럼 운동하는 평판층의 열탄성 불안정성)

  • 오재응;하태원;조용구;김흥섭;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.114-121
    • /
    • 2004
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness$\alpha$slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properlysimple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness $\alpha$ reduces, the system becomes more apt to thermoelastic instability. For perturbations with wave number smaller than the critical$m_{cr}$ the temperature increases with m vice versa for perturbations with wave number larges than $m_{cr}$ , the temperature decreases with m.

An Evaluation of Critical Speed for Draft Gear using Variable Formation EMU (도시철도차량의 가변편성을 고려한 고무완충기의 임계속도 평가)

  • Cho, Jeong Gil;Kim, Y.W.;Han, J.H.;Choi, J.K.;Seo, K.S.;Koo, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.139-143
    • /
    • 2019
  • In this study, we tried to derive the most severe scenario and its critical speed by 1-D collision simulation with a variable formation vehicle in order to prepare for the change of demand in Seoul Metropolitan Subway Line 3, which is operated by fixed arrangement. After establishing various collision scenario conditions, the friction coefficient between the wheel and the rail was evaluated as 0.3, which is considered to be severe. As a result of analysis according to all scenarios, the most severe scenario conditions were confirmed by comparing rubber shock absorber performance and vehicle collision deceleration. In addition, a typical wheel-rail friction coefficient was derived through accident cases, and the analysis was performed again and compared. Finally, the criterion of the critical speed in the condition of the friction coefficient of the normal wheel - rail condition was confirmed.