• Title/Summary/Keyword: Critical ratio

Search Result 2,015, Processing Time 0.028 seconds

The Oscillation Characteristics of a Magneticfluid Plug in Curved Tube (곡관내 자성유체 PLUG의 진동특성)

  • Chun, U.H.;Lee, H.N.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.46-57
    • /
    • 1995
  • The aim of the present study is to provide fundamental informations for the development of magneticfluid actuator. To achieve the aim, oscillation characteristics of the magneticfluid plug are investigated by experiment for the various length and position of the magneticfluid plug and the frequency of magnetic field. The oscillation characteristics are obtained. Amplitude, natural frequency, phase shift and damping ratio, are compared with theoretical values. From the study, the following conclusive remarks can be made. The experimental equation for the magnetic field is obtained. The critical magneticfluid length exists and its value is about 70mm. The range of the damping ratio and fluid loss coefficient obtained by experiment are 0.1~0.2 and 30~100, respectively. Comparison between experimental and theoretical results of oscillation characteristics shows good agreement in the high frequency range. Meanwhile, in the low frequency range, there appears little discrepancies(5% in the frequency and amplitude and 10% in phase difference and damping ratio) with each other.

  • PDF

Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy (형상기억합금을 이용한 지능형 고분자 복합재료의 설계)

  • Jeong, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

Effects of Slenderness ratio on Dynamic Behavior of Cantilever Beam Subjected to Follower Force (종동력을 받는 외팔보의 진동특성에 미치는 세장비의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Ahn, Tae-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.575-578
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a Timoshenko cantilever beam subjected to follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cantilever beam as slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton;s principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and tip mass on the critical follower force and the natural frequency of a Timoshenko beam are investigated.

  • PDF

Effects of Slenderness Ratio on Stability of Cracked Beams Subjected to Sub-tangential Follower Force (경사종동력을 받는 크랙 외팔보의 안정성에 미치는 세장비의 영향)

  • Gal, Young-Min;Ahn, Sung-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.961-966
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a Timoshenko cantilever beam subjected to Subtangential follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cantilever beam as slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton;s principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and tip mass on the critical follower force and the natural frequency of a Timoshenko beam are investigated.

  • PDF

A New Approach to Design Method of the Solar Compound Parabolic Concentrator with Tubular Absorber (태양열집속집열기의 설계 방법에 관한 연구)

  • Kim, Seok-Jong;Lim, Sang-Hoon
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • The intermediate range of temperatures($100{\sim}300^{\circ}C$) which can be achieved with CPCs(Compound Parabolic Concentrators) without tracking device provides both economic and thermal advantages for solar collector design. The present paper summarizes critical design considerations for CPC with cylindrical absorber and its optical performance using ray tracing program. Concentration ratios vary as acceptance half angle, ratio of reflector height to aperture width and ratio of reflector area to aperture area. This effects showed that the concentration ratio was increased as acceptance angle but optimum ratio of reflector height to aperture width existed at critical value. As a result of ray tracing, solar ray losses was maximized at acceptance half angle and this problem was solved by increasing absorber tube diameter. The concentrating flux distribution on the absorber surface was uniform but peak flux existed.

Assessing the Vulnerability of Network Topologies under Large-Scale Regional Failures

  • Peng, Wei;Li, Zimu;Liu, Yujing;Su, Jinshu
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.451-460
    • /
    • 2012
  • Natural disasters often lead to regional failures that can cause network nodes and links co-located in a large geographical area to fail. Novel approaches are required to assess the network vulnerability under such regional failures. In this paper, we investigate the vulnerability of networks by considering the geometric properties of regional failures and network nodes. To evaluate the criticality of node locations and determine the critical areas in a network, we propose the concept of ${\alpha}$-critical-distance with a given failure impact ratio ${\alpha}$, and we formulate two optimization problems based on the concept. By analyzing the geometric properties of the problems, we show that although finding critical nodes or links in a pure graph is a NP-complete problem, the problem of finding critical areas has polynomial time complexity. We propose two algorithms to deal with these problems and analyze their time complexities. Using real city-level Internet topology data, we conducted experiments to compute the ${\alpha}$-critical-distances for different networks. The computational results demonstrate the differences in vulnerability of different networks. The results also indicate that the critical area of a network can be estimated by limiting failure centers on the locations of network nodes. Additionally, we find that with the same impact ratio ${\alpha}$, the topologies examined have larger ${\alpha}$-critical-distances when the network performance is measured using the giant component size instead of the other two metrics. Similar results are obtained when the network performance is measured using the average two terminal reliability and the network efficiency, although computation of the former entails less time complexity than that of the latter.

Linear Stability of Variable-Viscosity Fluid Layer under Convection Boundary Condition (대류 조건하의 가변 점성 유체층의 선형 안전성)

  • 송태호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.132-141
    • /
    • 1992
  • The critical condition for onset of Benard convection with variable viscosity .nu.=.nu.$_{0}$exp(-CT) has been obtained using a linear stability theory. The bottom wall is rigid while the upper surface may be either free or rigid. The two boundaries are subject to convective heat transfer. The critical Rayleigh numbers are presented up to maximum viscosity ratio of 3000. It is greater for smaller upper and/or lower surface Biot numbers. Its dependence on the viscosity ratio is complicated. However, a simple sublayer theory is found to be applicable for extremely large viscosity ratio. In such cases, the critical Rayleigh number and the critical wave number are functions of viscosity ratio and lower surface Biot number.r.

The Hearing Ability of Black Rockfish Sebastes inermis to Underwater Audible Sound 2. The Auditory Critical Ratio (수중 가청음에 의한 볼락의 청각 능력 2. 청각 임계비)

  • LEE Chang-Heon;SEO Du-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.151-155
    • /
    • 2001
  • In order to obtain the fundamental data on the auditory thresholds of fishes for marine ranching, the auditory thresholds of black rockfish Sebastes inermis were measured in the presence of masking noise in the spectrum level range of $73\~83$ dB (0 dB re $1{\mu}Pa/\sqrt{Hz}$) with a classical cardiac conditioning technique. Critical ratios were about $28\~34$ dB at $80\~300$ Hz and $47\~52$ dB at $500\~800$ Hz. The ratio increased almost linearly with increasing frequency to 500 Hz. The noise spectrum level at the start of masking was about 70 dB within the frequency range of $80\~800$ Hz excepting 65 dB at 300 Hz. It means that hearing of the black rockfish is masked in the natural environment with the noise spectrum level above 65 dB. The sound pressure level of $200\~300$ Hz recognized by black rockfish was above 96 dB under the ambient noise and the critical ratio of them was above 26 dB.

  • PDF

Fabrication of SmBCO Coated Conductors using IBAD-MgO Template (IBAD-MgO 템플릿을 이용한 SmBCO 박막선재의 제조)

  • Ha, Hong-Soo;Kim, Ho-Sup;Yang, Ju-Saeng;Jung, Yae-Hyun;Kim, Ho-Kyum;Yoo, Kwon-Kuk;Ko, Rock-Kil;Song, Kyu-Jeong;Ha, Dong-Woo;Oh, Sang-Soo;Yeom, Do-Jun;Park, Chan;Yoo, Sang-Im;Moon, Seong-Hyun;Joo, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.30-31
    • /
    • 2006
  • We have fabricated SmBCO coated conductor on IBAD-MgO substrates using unique co-evaporation method. The batch type co-deposition system was specially designed and named as EDDC(evaporation using drum m dual chamber) that is possible to deposit superconducting layer with different composition ratio at low temperature of $700^{\circ}C$. In this study, we have investigated the influence of SmBCO phase composition and texture of IBAD-MgO template on the critical current density. We have changed the deposition rates of Sm, Ba and Cu during co-evaporation to examine the optimal composition ratio shown better critical current density. The composition ratio and surface morphology of SmBCO coated conductors were analyzed by the EDX and SEM, respectively. A higher critical current density was measured at superconducting phase composition ratio of Ba deficiency, Sm or Cu rich compared to the Sm1Ba2Cu3Ox stoichiometry.

  • PDF

Effects of the Low Temperature and Low Salt Solution on the Quality Characteristics of Salted Chinese Cabbage (저온-저염 절임기술이 절임배추의 품질 특성에 미치는 영향)

  • Lee, Seog-Won;Cho, Sun-Rae;Han, Sung-Hee;Rhee, Chul
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.3
    • /
    • pp.377-386
    • /
    • 2009
  • The principal objective of this study was to evaluate the influence of temperature and salt concentration on the physicochemical properties of salted Chinese cabbage. Salted Chinese cabbage samples were prepared with various concentrations of salt(4, 5, 6 and 7%), and were stored for 10 days at three temperatures(8, 14, and $25^{\circ}C$). The salting ratio of Chinese cabbage evidenced a decreasing trend regardless of the salting temperature and salt concentration, and their decrement appeared relatively high as the salting temperature increased. The period required to achieve a critical salting ratio(85%) decreased with increases in the salt concentration at $25^{\circ}C$, and a similar trend was observed at lower temperatures(8 and $14^{\circ}C$). The salinity of all samples evidenced an increasing trend during the salting period, and at $25^{\circ}C$, in particular, a continuous increment was observed. At salt concentrations of 4%, the critical salinity(2.2%) was not achieved regardless of the temperature and salting period. The pH of salted Chinese cabbage achieved critical pH in 3 days at a salting temperature of $25^{\circ}C$, but the critical pH 5.5 of samples at 8 and $14^{\circ}C$ appeared after a long period of approximately 4 to 10 days. The average hardness values of salted Chinese cabbage at a salting ratio of 85% were approximately 1.49 MPa, 1.87 MPa, and 1.97 MPa, respectively, at three temperatures($25^{\circ}C$, $14^{\circ}C$, and $8^{\circ}C$). The initial reducing sugar content of cabbage juice was 11.8 mg/$m{\ell}$, and this value decreased substantially to 3 to 5 mg/$m{\ell}$ on day 1.