• Title/Summary/Keyword: Critical pathways

Search Result 271, Processing Time 0.032 seconds

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

Insulin receptor substrate 2: a bridge between Hippo and AKT pathways

  • Jeong, Sun-Hye;Lim, Dae-Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.209-210
    • /
    • 2018
  • NAFLD induces the development of advanced liver diseases such as NASH and liver cancer. Therefore, understanding the mechanism of NAFLD development is critical for its prevention and treatment. Ablation of PTEN or Hippo pathway components induces liver cancer in a murine model by hyperactive AKT or YAP/TAZ, respectively. Although the regulation of these two pathways occurs in the same hepatocyte, the details of crosstalk between Hippo-YAP/TAZ and PTEN-AKT pathways in liver homeostasis and tumorigenesis still remain unclear. Here, we found that depletion of both PTEN and SAV1 in liver promotes spontaneous NAFLD and liver cancer through hyperactive AKT via YAP/TAZ-mediated up-regulation of IRS2 transcription. Conversely, NAFLD is rescued by both ablation of YAP/TAZ and activation of the Hippo pathway. Furthermore, human HCC patients with NAFLD showed strong correlation between YAP/TAZ and IRS2 or phospho-AKT expression. Finally, the inhibition of AKT by MK-2206 treatment attenuates NAFLD development and tumorigenesis. Our findings indicate that Hippo pathway interacts with AKT signaling during the intervention with IRS2 to prevent NAFLD and liver cancer.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

Comprehensive Transcriptomic Analysis for Thymic Epithelial Cells of Aged Mice and Humans

  • Sangsin Lee;Seung Geun Song;Doo Hyun Chung
    • IMMUNE NETWORK
    • /
    • v.23 no.5
    • /
    • pp.36.1-36.16
    • /
    • 2023
  • Thymic epithelial cells (TECs) play a critical role in thymic development and thymopoiesis. As individuals age, TECs undergo various changes that impact their functions, leading to a reduction in cell numbers and impaired thymic selection. These age-related alterations have been observed in both mice and humans. However, the precise mechanisms underlying age-related TEC dysfunction remain unclear. Furthermore, there is a lack of a comprehensive study that connects mouse and human biological processes in this area. To address this gap, we conducted an extensive transcriptome analysis of young and old TECs in mice, complemented by further analysis of publicly available human TEC single-cell RNA sequencing data. Our analysis revealed alterations in both known and unknown pathways that potentially contribute to age-related TEC dysfunction. Specifically, we observed downregulation of pathways related to cell proliferation, T cell development, metabolism, and cytokine signaling in old age TECs. Conversely, TGF-β, BMP, and Wnt signaling pathways were upregulated, which have been known to be associated with age-related TEC dysfunctions or newly discovered in this study. Importantly, we found that these age-related changes in mouse TECs were consistently present in human TECs as well. This cross-species validation further strengthens the significance of our findings. In conclusion, our comprehensive analysis provides valuable insight into the biological and immunological characteristics of aged TECs in both mice and humans. These findings contribute to a better understanding of thymic involution and age-induced immune dysfunction.

Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma

  • Qi, Peng;Wei, Chunhua;Kou, Dianbo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.555-564
    • /
    • 2021
  • We investigated the effects of naringenin and morin on IL-5 and ROS production in PMA+ionomycin-treated EL-4 cells with the corroboration of their antioxidant and anti-inflammatory properties using an asthma-induced mouse model. The EL-4 cell line was used to study the outcomes of naringenin or morin, followed by cell viability studies. Western blot analysis and ELISA test were used to determine Th2 mediated cytokines. In vivo studies were carried out on BALB/c mice to induce allergic asthma using ovalbumin administered intraperitoneally. Intracellular ROS was determined using 2',7'-dichlorodihydrofluorescein diacetate, followed by serum enzymatic (AST and ALT) estimations and inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and lung tissues. Histopathological studies were conducted to examine lung tissue-stained architecture. Our findings suggested that naringenin and morin significantly suppressed IL-5 and ROS production via various pathways. Interestingly, by reducing NFAT activity, naringenin and morin stimulated HO-1 expression, thereby suppressing IL-5 secretion due to regulating the transcription factor Nrf2 via P13/Akt or ERK/JNK signalling pathways in EL-4 cells, demonstrating the involvement of HO-1 expression in inhibiting asthmatic inflammation. The increased inflammatory cells in the BALF were substantially decreased by both naringenin and morin, followed by inhibition in the elevated Th-2 cytokines levels. The TNF-α protein levels in an allergic asthma mouse model were significantly reduced by suppressing Akt phosphorylation and eosinophil formation. Recent findings confirmed that naringenin and morin possess the potential to control asthma-related immune responses through antioxidant and anti-inflammatory properties, indicating potential therapeutic agents or functional foods.

A Survey on Public Perception of Korean Medical Treatment for the Development of Korean Medicine Clinical Practice Guideline and Critical Pathway for Growth Disorders (성장장애 한의표준임상진료지침 및 한의표준임상경로 개발을 위한 일반인의 한의치료에 대한 인식 조사)

  • Lee, Hyun Hee;Shim, Soo Bo;Lee, Hye Lim
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • Objectives The purpose of this study was to understand the public's perception of Korean medical treatment for growth disorders to develop Korean medicine clinical practice guidelines and critical pathways for growth disorders in children and adolescents. Methods A survey was conducted using an online platform targeting 252 adults aged 19 years from May 16, 2021 to May 17, 2021. The questionnaire consisted of questions about the demographic characteristics of respondents; overall perception, experience, and satisfaction with Korean medical treatment for growth disorders; willingness to use or recommend Korean medical treatment for growth disorders; and points for improvement. Results The overall perception of treatment for growth disorders was 3.30 ± 0.892 on a 5-point scale. Concerning the negative reasons, 54.4% of the respondents were concerned about safety; regarding the positive reason, expectations for overall health as well as height growth were the highest at 46.5%. Additionally, there was a high demand for information, such as providing safety information on treatment, presenting evidence for the efficacy of treatment, and standardized clinical process, as points requiring improvement. Conclusions To raise public perception of Korean medical treatment for growth disorders, it is necessary to satisfy the opinions of the public identified through this survey. Therefore, the development and utilization of Korean medicine clinical practice guidelines and critical pathways for growth disorders would play an important role.

Status of the Development and Utilization of Critical Pathways in Medical Institutions in South Korea (국내 의료기관의 표준진료지침 개발 및 운영 현황)

  • Oh, In-Ohg;Chang, Tae-Ik;Kim, Hyun-Jin;Han, Jung-Mi;Lee, Chun-Kyon
    • Quality Improvement in Health Care
    • /
    • v.28 no.1
    • /
    • pp.2-13
    • /
    • 2022
  • Purpose: This study assessed the status of the Development and Utilization of critical pathways (CP) in South Korea. Methods: We surveyed 195 hospitals obtained on the Korean Hospital Association website. Data were collected using structured questionnaires for staff members in charge of CP management personnel in these hospitals. The questionnaire included CP developed by the institutions, the coverage rates and completion rates of CP in the current year, and management indicators related to CP. The questionnaire also included CP support systems and content within the institutions and questions regarding the advantages of CP utilization and obstacles associated with the CP development process. Results: Analysis of the responses from 70 hospitals (35.9% response rate) showed that a total of 1,370 CP sets were developed. The number of CP related to surgery departments was 365 (26.6%), and CP related to surgery and procedure was 1,093 (79.8%), respectively. The CP coverage rate was the most frequently used indicator to monitor the effect of CP (97.1%), followed by the completion rate (90.0%) and the length of stay in hospital (61.4%). CP managers reported that CP were highly useful for communication (3.39±0.493) and accurate information provision (3.39±0.491). The perception that CP violated doctors' autonomy in treatment was relatively low (2.87±0.645). Conclusion: It is necessary to establish an infrastructure in hospitals for CP. CP can facilitate communication and provide accurate information.

Characteristics of 14-3-3 Proteins and Their Role in Plant Immunity

  • Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Phosphorylation is a major post-translational modification of proteins that regulate diverse signal transduction pathways in eukaryotic cells. 14-3-3 proteins are regulatory proteins that bind to target proteins in a phosphorylation-dependent manner and have been shown to play an important role in plant growth and development, primary metabolism, and signal transduction. Because phosphorylation plays a critical role in signal transduction pathways to trigger plant immunity, involvement of 14-3-3 proteins in plant immunity has been suggested for a long time. Recent studies have provided new evidence to support a role for 14-3-3 proteins in plant immunity. This review will briefly discuss general characteristics of 14-3-3 proteins and their involvement in plant immunity.

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.