Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.1.001

Characteristics of 14-3-3 Proteins and Their Role in Plant Immunity  

Oh, Chang-Sik (Boyce Thompson Institute for Plant Research)
Publication Information
The Plant Pathology Journal / v.26, no.1, 2010 , pp. 1-7 More about this Journal
Abstract
Phosphorylation is a major post-translational modification of proteins that regulate diverse signal transduction pathways in eukaryotic cells. 14-3-3 proteins are regulatory proteins that bind to target proteins in a phosphorylation-dependent manner and have been shown to play an important role in plant growth and development, primary metabolism, and signal transduction. Because phosphorylation plays a critical role in signal transduction pathways to trigger plant immunity, involvement of 14-3-3 proteins in plant immunity has been suggested for a long time. Recent studies have provided new evidence to support a role for 14-3-3 proteins in plant immunity. This review will briefly discuss general characteristics of 14-3-3 proteins and their involvement in plant immunity.
Keywords
disease resistance; HR; PCD; phosphopeptide binding; phosphorylation;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Roberts, M. R. 2003. 14-3-3 proteins find new partners in plant cell signaling. Trends Plant Sci. 8:218-223.   DOI   ScienceOn
2 Roberts, M. R. and Bowles, D. J. 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol. 119:1243-1250.   DOI
3 Roberts, M. R., Salinas, J. and Collinge, D. B. 2002. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol. Biol. 50:1031-1039.   DOI   ScienceOn
4 Schoonheim, P. J., Veiga, H., Pereira, D., Friso, G., van Wijk, K. J. and de Boer, A. H. 2007. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiol. 143:670-683.   DOI   ScienceOn
5 Seehaus, K. and Tenhaken, R. 1998. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea Plant Mol. Biol. 38:1225-1234.   DOI   ScienceOn
6 Sehnke, P. C., DeLille, J. M. and Ferl, R. J. 2002. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14:339-354.   DOI
7 Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:2060-2063.   DOI   ScienceOn
8 van Doorn, W. G. and Woltering, E. J. 2005. Many ways to exit? Cell death categories in plants. Trends Plant Sci. 10:117-122.   DOI   ScienceOn
9 Xing, W., Zou, Y., Liu, Q., Liu, J., Luo, X., Huang, Q., Chen, S., Zhu, L., Bi, R., Hao, Q., Wu, J.-W., Zhou, J.-M. and Chai, J. 2007. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449:243-247.   DOI   ScienceOn
10 Kim, Y. J., Lin, N.-C. and Martin, G. B. 2002. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589-598.   DOI   ScienceOn
11 Lancien, M. and Roberts, M. R. 2006. Regulation of Arabidopsis thaliana 14-3-3 gene expression by r-aminobutyric acid. Plant Cell Environ. 29:1430-1436.   DOI   ScienceOn
12 Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L. and He, P. 2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. USA 107:496-501.   DOI   ScienceOn
13 Morrison, D. K. 2009. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19:16-23.   DOI   ScienceOn
14 Nomura, K., Debroy, S., Lee, Y. H., Pumplin, N., Jones, J. and He, S. Y. 2006. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220-223.   DOI   ScienceOn
15 Oh, C.-S., Pedley, K. F. and Martin, G. B. 2010. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKa. Plant Cell (In press).
16 Ottmann, C., Marco, S., Jaspert, N., Marcon, C., Schauer, N., Weyand, M., Vandrmeeren, C., Duby, G., Boutry, M., Wittinghofer, A., Rigaud, J. and Oecking, C. 2007. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell 25:427-440.   DOI   ScienceOn
17 Pedley, K. F. and Martin, G. B. 2005. Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 8:541-547.   DOI   ScienceOn
18 Darling, D. L., Yingling, J. and Wynshaw-Boris, A. 2005. Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol. 68:281-315.   DOI   ScienceOn
19 Rienties, I. M., Vink, J., Borst, J. W., E. Russinova and de Vries, S. C. 2005. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14 lambda and the PP2C phosphatase KAPP. Planta 221:394-405.   DOI
20 Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814.   DOI   ScienceOn
21 del Pozo, O., Pedley, K. F. and Martin, G. B. 2004. MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J. 23:3072-3082.   DOI   ScienceOn
22 Devarenne, T. P., Ekengren, S. K., Pedley, K. F. and Martin, G. B. 2006. Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J. 25:255-265.   DOI   ScienceOn
23 Ferl, R. J. 2004. 14-3-3 proteins: regulation of signal-induced events. Physiologia plantarum 120:173-178.   DOI   ScienceOn
24 Ferl, R. J., Manak, M. S. and Reyes, M. F. 2002. The 14-3-3s. Genome Biol. 3:reviews3010.3011-3010.3017.
25 Finnie, C., Anderson, C. H., Borch, J., Gjetting, S., Christensen, A. B., de Boer, A. H., Thordal-Christensen, H. and Collinge, D. B. 2002. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?. Plant Mol. Biol. 49:137-147.   DOI   ScienceOn
26 Hammond-Kosack, K. E. and Parker, J. E. 2003. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14:177-193.   DOI   ScienceOn
27 Bai, M. Y., Zhang, L. Y., Gampala, S. S., Zhu, S. W., Song, W. Y., Chong, K. and Wang, Z.Y. 2007. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA 104:13839-13844.   DOI   ScienceOn
28 Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI   ScienceOn
29 Kim, J. G., Li, X., Roden, J. A., Taylor, K. W., Askre, C. D., Su, B., Lalonde, S., Kirik, A., Chen, Y., Baranage, G., McLane, H., Martin, G. B. and Mudgett, M. B. 2009. Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21:1305-1323.   DOI   ScienceOn
30 Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. and Sheen, J. 2002. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977-983.   DOI   ScienceOn
31 Bogdanove, A. J. and Martin, G. B. 2000. AvrPto-dependent Ptointeracting proteins and AvrPto-interacting proteins in tomato. Proc. Natl. Acad. Sci. USA 97:8836-8840.   DOI
32 Bridges, D. and Moorhead, G. B. G. 2005. 14-3-3 proteins: a number of functions for a numbered protein. Sci. STKE re10:2-10.
33 Chang, I. F., Curran, A., Woolsey, R., Quilici, D., Cushman, J. C., Mittler, R., Harmon, A. and Harper, J. F. 2009. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9:1-19.   DOI   ScienceOn
34 Chaudhri, M., Scarabel, M. and Aitken, A. 2003. Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem. Biophys. Res. Commun. 300:679-685.   DOI   ScienceOn
35 Yang, X. Y., Lee, W. H., Sobott, F., Papagrigoriou, E., Robinson, C. V., Grossmann, G., Sundstrom, M., Doyle, D. A. and Elkins, J. M. 2006. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA 103:17237-17242.   DOI   ScienceOn
36 Chen, F., Li, Q., Sun, L. and He, Z. 2006. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res. 13:53-63.   DOI   ScienceOn
37 Chevalier, D., Morris, E. R. and Walker, J. C. 2009. 14-3-3 and FHA domains mediate phosphorylation interactions. Ann. Rev. Plant Biol. 60:67-91.   DOI   ScienceOn
38 Yaffe, M. B. 2002. How do 14-3-3 proteins work? - Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513:53-57.   DOI   ScienceOn
39 Yan, J., Wang, J. and Zhang, H. 2002. An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J. 29:193-202.   DOI   ScienceOn
40 Yang, X., Wang, W., Coleman, M., Orgil, U., Feng, J., Ma, X., Ferl, R. J., Turner, J. G. and Xiao, S. 2009. Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. Plant J. 60:539-550.   DOI   ScienceOn
41 Zhou, J.-M., Loh, Y.-T., Bressan, R. A. and Martin, G. B. 1995. The tomato gene Pti1 encodes a serine-threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925-935.   DOI   ScienceOn
42 Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Current opinion in immunology 20:10-16.   DOI   ScienceOn