• Title/Summary/Keyword: Critical micelle concentration (CMC)

Search Result 162, Processing Time 0.022 seconds

Mixed Micellization of Anionic Ammonium Dodecyl Sulfate and

  • Gang, Gye Hong;Kim, Hong Un;Im, Gyeong Hui;Jeong, No Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1009-1014
    • /
    • 2001
  • In aqueous mixtures of cationic OTAC (octadecyl trimethyl ammonium chloride) and anionic ADS (ammonium dodecyl sulfate) surfactants, mixed micelles were formed at low (< 0.2 wt %) total surfactant concentrations. For these mixtures mixed micelliza tion and interaction of surfactant molecules were examined. Mixed critical micelle concentration (CMC), thermodynamic potentials of micellization, and minimum area per surfactant molecule at the interface were obtained from surface tensiometry and electrical conductometry. The mixed micellar compositions and the estimation of interacting forces were determined on the basis of a regular solution model. The CMCs were reduced, although not substantial, and synergistic behavior of the ADS and OTAC in the mixed micelles was observed. The CMC reductions in this anionic/cationic system were comparable to those in nonionic/anionic surfactant systems. The interaction parameter $\beta$ of the regular solution model was estimated to be -5 and this negative value of $\beta$ indicated an overall attractive force in the mixed state.

Effect of NaCl, n-Butanol, and Temperature on the Micellization of Ammonium Cationic Surfactants (DTAB, TTAB, and CTAB) in Aniline Solution (아닐린 수용액에서 암모늄형 양이온성계면활성제 (DTAB, TTAB, 및 CTAB)의 미셀화에 미치는 염, n-부탄올 및 온도의 효과)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.407-416
    • /
    • 2019
  • The criticical micelle concentration (CMC) was measured by using the UV-Vis method for the micellization of the ammonium type cationic surfactants (DTAB, TTAB, and CTAB) in the aqueous aniline solution. The enthalpy change (${\Delta}H^0$) and entropy change (${\Delta}S^0$) were calculated from the dependence of Gibbs free energy change (${\Delta}G^0$) on the temperature for micellization of the cationic surfactants between 290K and 314K. The effects of n-butanol and sodium chloride on the micellization of cationic surfactants were measured and compared with the other thermodynamic functions. All the free energy changes (${\Delta}G^0$) of the micellization were negative, all the enthalpy change (${\Delta}H^0$) were negative, and all the entropy change (${\Delta}S^0$) were positive values, respectively. The micelle formation of cationic surfactant in aniline solution is a spontaneous exothermic reaction, and the iso-structural temperature calculated from the thermodynamic values show that enthalpy and entropy contribution to the micellization are almost the same for the micellization of cationic surfactants

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

Synthesis and Characterization of Interfacial Properties of a Cationic Surfactant Having Three Hydroxyl Groups (세 개의 히드록실기를 가진 양이온 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Byung Min;Kim, Ji-Hyun;Kim, Sung Soo;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.433-439
    • /
    • 2012
  • In this study, a cationic surfactant BHMAS (N,N-bis-(3'-n-dodecyloxy-2'-hydroxypropyl)-N-methyl-2-hydroxyethylammonium methyl sulfate) having two lauryl and three hydroxyl groups was synthesized by the reaction of n-dodecyl glycidyl ether and 2-aminoethanol followed by the quarternization with dimethyl sulfate. The structure of the product was elucidated by $^{1}H-NMR$ and FT-IR. The CMC (critical micelle concentration) and surface tension of BHMAS at CMC condition were found to be $9.12\;{\times}\;10^{-4}$ mol/L and 28.71 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer indicated that a relatively long time was required to saturate the interface between air and aqueous surfactant solution. The interfacial tension measured between 1 wt% surfactant solution and n-decane reached an equilibrium value of 0.045 mN/m in 5 min. The adsorption capacity of the synthesized surfactant was observed to be excellent, which suggests that the surfactant can be used as a softening agent during a laundry process.

Chromate Removal from Wastewater using Micellar Enhanced Ultrafiltration and Activated Carbon Fibre Processes; Validation of Experiment with Mathematical Equations

  • Bade, Rabindra;Lee, Seung-Hwan
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2008
  • In this study, chromate and cetylperidinium chloride (CPC) removal from artificial wastewater was monitored by using micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) adsorption hybrid processes. For the efficient chromate removal, molar concentration of the CPC should be five times that of chromate and it should be at least one critical micelle concentration (CMC). The MEUF was found to be effective in the chromate removal while ACF in the CPC adsorption to produce chromate and CPC free effluents. The chromate and CPC removal was 99.8% from MEUF-ACF process. Effluent chromate concentration was exponentially correlated with molar ratio of CPC to chromate and pH.

characteristics of Biosurfactant Produced by Pseudomonas sp. EL-G527 from Activated Sludge

  • Lim, Eun-Gyoung;Cha, Mi-Sun;Park, Geun-Tae;Son, Hong-Joo;Lee, Sang-Joon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.221-225
    • /
    • 2000
  • Pseudomonas sp. EL-G527 was grown to produce a biosurfactant on 2% n-hexadecane as the energy and carbon source. This biosurfactant significantly reduced the surface tension of water from 72 to 28 dyne/cm at a critical micelle concentration(CMC) of 140 mg/l at pH 2.0. As the pH value decreased, the reduction in the surface tension due to the biosurfactant increased. The surface activity of the biosurfactant was unaffected when the NaCl concentration was increased to 5% and the calcium ion concentration increased to 100 mM, plus it remained stable at 10$0^{\circ}C$ for 180 min.

  • PDF

Synergy effect for performance of anionic SDS/ADS mixtures with amphoteric and nonionic surfactants

  • Noh, Hongche;Kang, Taeho;Ryu, Ji Soo;Kim, Si Yeon;Oh, Seong-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.449-458
    • /
    • 2016
  • Detergency and surface active properties of mixed anionic surfactants with amphoteric and nonionic were investigated. Sodium dodecyl sulfate (SDS) and ammonium dodecyl sulfate (ADS) as anionic surfactants and cocamidopropyl betaine (CAPB) as an amphoteric surfactant were used. Nonionic surfactants, which are butyl glucoside (BG), octyl glucoside (OG), decyl glucoside (DG), lauryl dimethylamine oxide (AO) and saponin were also used. To study the synergy effects of mixed SDS/ADS anionic surfactant systems, amphoteric and nonionic surfactants were added into the mixed anionic surfactants. Investigated properties of surfactant mixtures were critical micelle concentration (CMC), surface tension (${\gamma}$), wettability. In addition, based on these properties, detergency of each sample was examined. Surfactant mixtures are anionics (SDS/ADS), anionic/amphoteric/nonionic (SDS/ADS/CAPB/saponin), and anionic/nonionic (SDS/ADS/BG/saponin, SDS/ADS/OG/saponin, SDS/ADS/DG/saponin, and SDS/ADS/AO/saponin). With the addition of amphoteric and nonionic to mixed anionic surfactants, CMC and ${\gamma}$ were decreased. Addition of CAPB, which is amphoteric, showed the best property at CMC and ${\gamma}$. Furthermore, as the chain length of hydrocarbon in alkyl glucosides was increased, the CMC and ${\gamma}$ were enhanced. However, the wettability did not exactly match up with CMC and ${\gamma}$. The surfactant mixture, which contained DG, showed the best performance at wetting time. Detergency was measured at various temperatures ($15^{\circ}C$, $30^{\circ}C$, $50^{\circ}C$). The cleaning performance was enhanced by increasing washing temperature. Moreover, detergency was influenced by not only CMC and ${\gamma}$ but also wettability. Although CMC and ${\gamma}$ were not minimum at surfactant mixture that included DG, the best cleaning performance showed in that sample.

Surfactant Selection for the Enhanced Biological Degradation of Toluene (Toluene의 생물학적 분해능 향상을 위한 계면활성제의 선정)

  • Kim Yong-Sik;Son Young-Gyu;Khim Jee-Hyeong;Song Ji-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.26-32
    • /
    • 2005
  • Surfactants can be used to enhance the mass transfer rate of hydrophobic compounds into the biologically active liquid phase, resulting in an increase in biodegradation rate of toluene. In this study, the mass transfer rate and the biocompatibility of toluene in the presence of various surfactants were evaluated. Four anionic and non ionic surfactants were tested: sodium dodecyl sulfate (SOS), TritonX-100, Tween 80, and BYK-345 (silicone surfactant). Experimental results showed that BYK-345 at the critical micelle concentration (CMC) enhanced the solubility of toluene. However, there was no increase in the solubility of toluene by SOS and TritonX-100 at their CMCs. With the addition of each surfactant into deionized water the mass transfer rate became faster than that of the case with no surfactant. A bottle study using toluene-degrading microorganisms showed that SOS seriously reduced toluene removal presumably due to the toxicity of the anionic surfactant and/or the substrate competition between the surfactant and toluene. In addition, the degradation rate of toluene was decreased in the presence of BYK-345, indicating that BYK-345 adversely affects the activity of microorganisms. However, TritonX-100 and Tween 80 did not decrease the degradation rate of toluene significantly. Rather, at the low concentration of TritonX-100 toluene degradation rate was even increased. Overall the experimental results suggest that TritonX-100 be the appropriate surfactant for enhanced biological degradation of toluene.

Removal of Aqueous Iron Ion by Micellar Enhanced Ceramic Microfiltration Adding Surfactant (계면활성제를 첨가한 미셀 형성 세라믹 정밀여과에 의한 용존 철 이온 제거)

  • Park, Jin Yong;Yu, Byeong Gwon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.190-194
    • /
    • 2009
  • In this study sodium dodecyl sulfate (SDS), which was anionic surfactant, was added for forming micelles to remove iron ion that could be contained with small amount in industrial water. Then aggregates binding between iron ions and micelles were rejected by a ceramic microfiltration membrane. As result of SDS concentration effect on removal rates of iron and SDS in modified iron solution, the removal rate of iron was the highest value of 92.26% and the removal rate of SDS was 61.10% a little higher than the result of calcium ion at 8 mM which was CMC (Critical micelle concentration) of SDS. As final resistance of membrane fouling $R_f$ increased the more at the higher SDS concentration, it showed the highest value at 4 mM and the lowest at 10 mM of SDS. The final permeate flux $J_{180}$ had the highest value and the largest total permeate volume could be finally acquired at SDS 10 mM. In case of CMC 8 mM, low $R_f$ was shown as same as that of 10 mM until 80 minutes of operation, and tended to increase dramatically to 120 minutes and increase slowly again until 180 minutes.

Electrochemical Behavior of Bis(2,2'-Bipyridyl) Copper(II)-Sodium Dodecyl Sulfate Solution in the Presence of $MgCl_2$ (염화마그네슘이 있을 때 비스(2,2'-비피리딜)구리(II)-도데실황산나트륨 용액의 전기화학적 거동)

  • Ko, Young Chun;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.126-130
    • /
    • 1997
  • Electrochemical behavior of 1.0mM bis(2,2'-bipyridyl)copper( II )(${Cu(bpy)_2}^{2+}$) in 100mM NaCl+27mM $MgCl_2$ solution with and without sodium dodecyl sulfate(SDS) is investigated. In the presence of SDS, $E_{pa}$ and $E_{1/2}$ of ${Cu(bpy)_2}^{2+/1+}$ shifts to the positive direction compared to the SDS free. Teh intersection of two lines on ${\Delta}E_p$ vs. -log[SDS] plot for 1.0mM $Cu(bpy)_2(NO_3)_2$ in 100mM NaCl+27mM $MgCl_2$ solution is a critical micelle concentration(CMC). Reduced form ${Cu(bpy)_2}^{1+}$ in the presence of $MgCl_2$ is more easily associated to dodecyl sulfate anion($DS^-$) than oxidized ${Cu(bpy)_2}^{2+}$. As the ionic strength is increased by the addition of multiply charged cations($MgCl_2$), the double layer becomes more compact and micelle formation is more difficult.

  • PDF