• 제목/요약/키워드: Critical leakage current

검색결과 47건 처리시간 0.026초

누설전류 측정을 통한 옥외절연물 오손도 측정 (Study for Measurement of Polluted Outdoor Insulations Using Leakage Current)

  • 이부원;김성중;박우용;김영달
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.2068-2069
    • /
    • 2007
  • This study describes a compairison leakage current properties between a polluted insulator and insulator subjected to salt polluted condition. Exposure tests at a sea coast test and the leakage current of insulators, climate conditions, and salt deposit density were measured during the tests. Appearance of leakage current for the insulator was affected by the humidity and the salt deposition on the surface. comparison of leakage current under salt polluted conditions. salt polluted test and humidity tests were carried out in laboratory using the same insulator profiles in oder to determine the leakage current patterns during critical conditions

  • PDF

Gate Leakage Current of Power GaAs MESFET's at High Temperature

  • Won Chang-sub;Ahn Hyungkeun;Han Deuk-Young
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.44-46
    • /
    • 2001
  • Increase of gate leakage current causes decrease of gain and increase of noise. In this paper, gate leakage current of GaAs MESEFTs' has been traced with different temperatures from $27^{\circ}C\;to\;350^{\circ}C$ to obtain the zero voltage saturation current $J_s$ which is critical to the temperature dependency of total current. From the results, thermal leakage current coefficient has been proposed to compensate for the total current due to the thermionic emission, tunneling, generation and/or hole injection.

  • PDF

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

옥외 애자용 재료의 표면 전기전도특성 (Properties of Surface Electrical Conduction in Materials for Outdoor Insulator)

  • 박영국;강성화;정수현;이운석;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition. The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

옥외 애자용 재료의 표면 전기전도 특성 (Electrical Conduction Properties of Surface in Materials for Outdoor Insulator)

  • 박영국;이운석;정수현;장동욱;임기조
    • 한국전기전자재료학회논문지
    • /
    • 제11권10호
    • /
    • pp.758-762
    • /
    • 1998
  • Electrical conduction property of insulator surface is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the materials to be used for outdoor insulator such as porcelain, EPDM, silicone rubber was discussed by measuring properties of average leakage current and scintillation discharge pulses under salt fog conditions. The fog was applied by nozzle in chamber and fogging fluids were deionized distilled water, 0.5wt% NaCI solution and 2wt% NaCl solution. The average leakage current showed linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage were much different to those in case of dry and clean condition with 2wt% salt fog. In case of slat fog pollution condition, the leakage current was increased above critical voltage. the scintillation discharges were also activated at the level. The leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

GaAs MESFET의 온도변화에 다른 게이트 누설전류 특성 (Gate Leakage Current Characteristics of GaAs MESFETS′ with different Temperature)

  • 원창섭;김시한;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 2001
  • In this study, gate leakage current mechanism has been analyzed for GaAs MESFET with different temperatures ranging from 27$^{\circ}C$ to 300$^{\circ}C$ . It is expected that the thermionic and field emission at the MS contact will dominate the current flow. Thermal cycle is applied to test the reliability of the device. From the results, it is proved that thermal stress gradually increases the gate leakage current at the same bias conditions and leads to the breakdown and failure mechanism which is critical in the field equipment. Finally the gate contact under the repeated thermal shock has been tested to check the quality of Schottky barrier and the current will be expressed in the analytical from to associate with the electrical characteristics of the device.

  • PDF

회로보호용 반도체 소자의 구조적 특성 (Structure Properties of Semiconductor Devices to Protect Electronic Circuit)

  • 홍경진;민용기;조재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2001
  • When varistors for circuit protection is used at high voltage, it's operation properties were unstable because of leakage current and nonlinear coefficient with grain size. For the purpose of improving of ZnO varistor properties, high voltage ZnO varistor was fabricated with Y$_2$O$_3$addition. Electrical properties were investigated according to sintering conditions and mixing conditions. ZnO varistors was shown ohmic Properties when it's applied voltage was below critical voltage. It was shown non-ohmic properties over critical voltage, because current was increased with decreasing resistance.

  • PDF

Effects of Non-uniform Pollution on the AC Flashover Performance of Suspension Insulators

  • Zhijin, Zhang;Jiayao, Zhao;Donghong, Wei;Xingliang, Jiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.961-968
    • /
    • 2016
  • The non-uniform distribution of contamination on insulator surface has appreciable effects on flashover voltage, and corresponding researches are valuable for the better selection of outdoor insulation. In this paper, two typical types of porcelain and glass insulators which are widely used in ac lines were taken as the research subjects, and their corrections of AC flashover voltage under non-uniform pollution were studied. Besides, their flashover characteristics under different ratio (T/B) of top to bottom surface salt deposit density (SDD) were investigated, including the analysis of flashover voltage, surface pollution layer conductivity and critical leakage current. Test results gave the modified formulas for predicting flashover voltage of the two samples, which can be directly applied in the transmission line design. Also, the analysis delivered that, the basic reason why the flashover voltage increases with the decrease of T/B, is due to the decrease of equivalent surface conductivity of the whole surface and the decrease of critical leakage current. This research will be of certain value in providing references for outdoor insulation selection, as well as in proposing more information for revealing pollution flashover mechanism.

LDPE에서 부시형 전기트리의 성장에 수반되는 부분방전 펄스의 특성 (Properties of PD Pulses accompanying with propagation of Bush-type tree in LDPE)

  • 박영국;강성화;정수현;박철현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition, The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level. the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

저누설 다이오드를 사용한 저전력 압전발전기의 효율 개선에 관한 연구 (Energy Conversion Efficiency Improvement of Piezoelectric Micropower Generator Adopting Low Leakage Diodes)

  • 김혜중;강성묵;김호성
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.938-943
    • /
    • 2007
  • In this paper, we show that, in case of piezoelectric micropower generator, just replacing Schottky diodes in the bridge rectifier with ultra-low reverse leakage current diodes improves the mechanical-to-electrical energy conversion efficiency by more than 100%. Experimental and PSPICE simulation results show that, due to the ultra-low leakage current, the charging speed of the circuit employing PAD1 is higher than that of the circuit employing Schottky diodes and the saturation voltage of the circuit employing PAD1 is also higher. This study suggests that , when the internal impedance of source is very large (a few tens of $M{\Omega}$) such that maximum charging current is a few microamperes or less, in order to realize literally the energy scavenging system, ultra-low reverse leakage current diodes should be used for efficient energy conversion. Since low-level vibration is ubiquitous in the environment ranging from human movement to large infrastructures and the mechanical-to-electrical energy conversion efficiency is much more critical for use of these vibrations, we believe that the improvement in the efficiency using ultra-low leakage diodes, as found in this work, will widen greatly the application of piezoelectric micropower generator.