• Title/Summary/Keyword: Critical infrastructure

Search Result 481, Processing Time 0.027 seconds

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

A Study on Numerical Analyses and Field Application for Tunneling Using the Critical Strain in the Ground (지반의 한계변형률을 이용한 터널수치해석 및 현장 적용성 연구)

  • Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 2008
  • This study was carried out to assess quantitatively the safety of a tunnel by using critical strains in the ground. Critical strain is a new material property of the ground. It can be applied as deformation limits in the ground due to excavation using the measured displacement at the tunnel construction site. To achieve this purpose, the critical strain concept was reviewed and applied to assess the tunnel safety. First of all, the calculated excavation displacements of a circular tunnel by commercial programs were investigated and inputted into a feedback analysis module to calculate strains in the ground. Then the safety of tunnels was evaluated based on the critical strain concept. Subsequently the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using the critical strain concept. Through this study, it was confirmed that the critical strain concept is useful to assess the safety of tunnels quantitatively.

중소기업의 기술능력 제고를 위한 기술하부구조정책: 미국의 MEP와 한국의 중진공을 중심으로 한 사례 비교

  • 성태경
    • Journal of Technology Innovation
    • /
    • v.8 no.2
    • /
    • pp.19-65
    • /
    • 2000
  • This study analyzes the development of technological infrastructure(TI) and technological infrastructure policy(TIP) to enhance the technological capabilities of small and mid-sized manufacturing enterprises(SMEs) in the U.S. and Korea in terms of the technological system(TS) concept, which is composed of technological infrastructure, industrial organization, and institutional infrastructure. In order to analyze the internal dynamics of the system, such as incentive mechanisms, the interaction among economic actors, and the policy implementation process, we compare the MEP(Manufacturing Extension Partnership) system of the U.S. and the Joong-Jin-Gong system of Korea. Among many similarities, contrasts, and insights from each country's effort to construct TI and TS, the main findings are as follows. (1) Both the MEP system and the Joong-Jin-Cong system are TI-led or government-led type TS. However, the nation-wide picture is different: in the U.S., most TSs including the MEP system., are classified as TI-led type; in Korea, many TI-assisted or private sector-led TSs have been developed since the early 1960s. (2) the MEP system, as a representative case of the U.S., is less stable than the Joong-Jin-Gong system of Korea in terms of financing and political cycle. (3) The MEP system is a more complex and cooperative network than the Joong-Jin-Gong system. NIST, as a critical mass, generates the system, bridges various institutions, and influences the development of the system by providing funding. (4) Regarding TI components, TSs in both countries focus on utilizing off-the-shelf technologies rather than advanced technologies. However, the direction of movement is different: in the U.S., TSs have come to emphasize existing technologies to counterbalance an innovation system that has been highly focused toward new technologies; in Korea, TSs have been moving from focusing on a higher diffusion rate of imported process technologies to stressing new technology development. (5) Personnel and staffing, embodying technological capability, is an important concern in both countries. But the human capital infrastructure of the U.S. system is more efficient and industry-oriented than that of the Korean system due to a more flexible labor market. (6) While the U.S. has a strong tradition of state and local autonomy in constructing TI and TS to fit SMEs's specific need, Korea has a centralized and bureaucratically-led policy implementation process.

  • PDF

Probability-Based Performance Prediction of the Nuclear Contaminated Bio-Logical Shield Concrete Walls (원전 방사화 콘크리트 차폐벽의 확률 기반 성능변화 예측)

  • Kwon, Ki-Hyon;Kim, Do-Gyeum;Lee, Ho-Jae;Seo, Eun-A;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.316-322
    • /
    • 2019
  • A probabilistic approach considering uncertainties was employed to investigate the effects on the material characteristics and strength of nuclear bio-logical shield concrete walls, when exposed to long-term radiation during the entire service life. Time-dependent compressive and tensile strengths were estimated by conducting the neutron fluence analysis. For the contaminated concrete, individual compressive and tensile failure probabilities can be possibly evaluated by not only establishing limit-state function withthe predefined critical values but also performing Monte Carlo Simulation. Nuclear power plant types similar to the Kori Unit 1, which was shut off permanently in 2017 after the 40-year operation, were herein selected for an illustrative purpose. Consequently, the probability-based performance assessment and prediction of contaminated concrete walls were well demonstrated.

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

Critical Success Factors on PPP Water Project in a Developing Country: Evidence from Indonesia

  • SURACHMAN, Eko Nur;HANDAYANI, Dian;SUHENDRA, Maman;PRABOWO, Sakti
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.1071-1080
    • /
    • 2020
  • This study aims to explore the critical success factors of the Water Public-Private Partnership (PPP) Projects in developing country with evidence from Indonesia. We all know that water is a basic need and therefore it becomes very important for the governments especially in the developing countries to develop and formulate a comprehensive water policy to deliver and manage the water services in the most appropriate manner as well tackle several challenges such as budget and project efficiency. In this context, PPP is a promising scheme to address the water problems, hence it becomes important to reveal the success factors of water PPP projects. An Analytic Hierarchy Process (AHP) questionnaire built from delphi methods is used to capture the perception of the relevant stakeholders in relation to the success factors. The results of this study show the most critical success factors in PPP water projects is the support and acceptance of the stakeholders from the community, whereas the private and public entities are the the second and third important factors. These findings contribute to the success of the PPP stakeholders by enhancing the policy-making decision process and by executing the water policies to support the development of PPP in the Water Sector.

A Study of the Influencing Factors on the User Satisfaction for the UCI Digital Identifier System (UCI 디지털식별체계시스템의 사용자만족에 영향을 미치는 요인에 관한 연구)

  • Lim, Gyoo-Gun;Kim, Jae-Hun;Baek, Seung-Ik;Park, Seung-Bum
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.197-218
    • /
    • 2010
  • Korean Government has invested a lot of efforts on digital contents industry. It believes that the digital contents industry enables Korea to regain the reputation of the most powerful IT country. Among its various efforts to promote the digital contents industry, a Digital Contents Identifier System, called UCI(Universal Contents Identifier), has been developed and deployed. UCI has provided a critical infrastructure for digital contents production and distribution. Thanks to Korean Government's efforts, users (companies and individuals) have currently registered 3.8 million digital contents through 25 RA organizations. Although the number of registered contents has been increased rapidly, many organizations hesitate to adopt the UCI system due to the lack of visible and short-term returns from the UCI system. Thus, this research tries to explore factors which affect UCI user satisfaction. This research finds that user's awareness, information quality, and service quality are the critical influencing factors toward UCI user satisfaction. In addition, this research finds that the critical influencing factors in public organizations are different from the critical influencing factors in private organizations. These findings hopefully provide useful guidelines for disseminating the UCI system widely.

A Computationally Inexpensive Radio Propagation Model for Vehicular Communication on Flyovers and Inside Underpasses

  • Ahsan Qureshi, Muhammad;Mostajeran, Ehsan;Noor, Rafidah Md;Shamim, Azra;Ke, Chih-Heng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4123-4144
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) utilize radio propagation models (RPMs) to predict path loss in vehicular environment. Modern urban vehicular environment contains road infrastructure units that include road tunnels, straight roads, curved roads flyovers and underpasses. Different RPMs were proposed in the past to predict path loss, but modern road infrastructure units especially flyovers and underpasses are neglected previously. Most of the existing RPMs are computationally complex and ignore some of the critical features such as impact of infrastructure units on the signal propagation and the effect of both static and moving radio obstacles on signal attenuation. Therefore, the existing RPMs are incapable of predicting path loss in flyovers and underpass accurately. This paper proposes an RPM to predict path loss for vehicular communication on flyovers and inside underpasses that considers both the static and moving radio obstacles while requiring only marginal overhead. The proposed RPM is validated based upon the field measurements in 5 GHz frequency band. A close agreement is found between the measured and predicted values of path loss.

Security Analysis of AMI Using ACT (ACT를 이용한 AMI 보안 분석)

  • Wi, Miseon;Kim, Dong Seong;Park, Jong Sou
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.639-653
    • /
    • 2013
  • Smart grid is a network of computers and power infrastructure that monitor and manage energy usage efficiently. Recently, the smart grid demonstration projects around the world, including the United States, Europe, Japan, and the technology being developed. The protection of the many components of the grid against cyber-threats has always been critical, but the recent Smart grid has been threatened by a variety of cyber and physical attacks. We model and analyze advanced metering infrastructure(AMI) in smart grid. Using attack countermeasure tree(ACT) we show qualitative and probabilistic security analysis of AMI. We implement using SHARPE(Symbolic Hierarchical Automated Reliability and Performance Evaluator) tool and calculate probability, ROA, ROI, Structure Importance, Birnbaum Importance.