• Title/Summary/Keyword: Critical failure condition

Search Result 128, Processing Time 0.027 seconds

Critical Failure Condition of Reinforced Earth Wall by Photograph (사진촬영을 통한 보강토옹벽의 파괴조건 연구)

  • Ju, Jae-Woo;Kim, Seong-Tae;Kim, Jae-Young;Chang, Yong-Chai;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.380-387
    • /
    • 2004
  • Recently the geosynthetics reinforced retaining wall has been widely used instead of the steel reinforced retaining wall. The geosynthetics reinforced retaining wall is a very dangerous structure if the geosynthetics lose their strength about tension or if it lose their pullout resistence, but it was known that the geosynthetics reinforced wall had a great resistence and was a very safe structure against a earthquake or a dynamic load. It can be said that most important factors in the stability of the geosynthetics reinforced wall are the horizontal length of reinforcement and the vertical distance between two reinforcements. That is to say, as the length of reinforcement is longer, the structure is more stable and as the vertical distance between two reinforcements is shorter, it is more stable. In this study, in order to get the critical condition with a safety rate of 1, various kinds of model tests about geosynthetics reinforced wall has been performed. Photos by B-shutter method has been taken during tests and from photos, which show us the failure state, the critical condition about failure has been conformed. Accordingly the equation, which says the limit of stability in geosynthetics reinforced wall., has been proposed.

  • PDF

Premature Failure of Deep Grooved Ball Bearing for Automobiles : Part 2 - Critical Dent Size (자동차용 깊은홈 볼베어링의 조기파손 : 2보 - 임계압흔의 크기)

  • Hyun Joons;Park Tae Jo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.395-401
    • /
    • 2003
  • In this paper, the dent printing phenomena and critical dent size which lead to premature failure of deep grooved ball bearing for automobiles are presented. The results of newly assembled test bearings showed that the ball dent size strongly affect the bearing life and inner ring raceways were the major failed parts in spite of using the dented balls. The dent printing phenomena are a root cause of premature failure, which was not reported until now. And there exist the critical ball dent size for given rolling bearings and operating conditions. So, the initial condition of tribologically mating parts should be treated as important as the failed body itself.

  • PDF

Lifetime Estimation of Amplifier IC due to Electromigration failure (Electromigration 고장에 의한 Amplifier IC의 수명 예측)

  • Lee, Ho-Young;Chang, Mi-Soon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1265-1270
    • /
    • 2008
  • Electromigration is a one of a critical failure mechanism in microelectronic devices. Minimizing the thin film interconnections in microelectronic devices make high current densities at electrrical line. Under high current densities, an electromigration becomes critical problems in a microelectronic device. This phenomena under DC conditions was investigated with high temperature. The current density of 1.5MA/cm2 was stressed in interconnections under DC condition, and temperature condition $150^{\circ}C,\;175^{\circ}C,\;200^{\circ}C$. By increasing of thin film interconections, microelectronic devices durability is decreased and it gets more restriction by temperature. Electromigration makes electronic open by void induced, and hillock induced makes electronic short state.

  • PDF

Evaluation for Applications of Displacement Criterion by the Critical Strain of Uniaxial Compression in Rock Mass Tunnel (일축압축 한계변형률에 의한 암반터널 변위기준 적용성 평가)

  • Kim, Young-Su;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.321-329
    • /
    • 2009
  • Laboratory compressive test was conducted on 6 different types of rock in order to investigate the characteristic of critical strain under uniaxial and triaxial stress condition. The results of uniaxial compressive test mostly ranged within 1~100MPa, the critical strain was also located between 0.1~1.0%. Therefore the results distributed within the upper and lower boundary proposed by Sakurai (1982). And the failure/critical strain ratio (${\varepsilon}_f/{\varepsilon}_0$) showed between 1.0~1.8 value depending on the uniaxial compressive strength. The results of critical strain by triaxial compressive test showed below 0.8% value for all test, the M value calculated from uniaxial and triaxial compressive test results ranged 1.0~8.0 for most of rock specimens. It is concluded that failure strain (${\varepsilon}_{f3}$) of rock mass, which is in triaxial stress condition is larger than the results of uniaxial stress condition (${\varepsilon}_{f1}$) by 1.0~8.0 times and value showed 1.0~1.8 larger value than critical strain (${\varepsilon}_{01}$). Therefore it is a conservative way for rock tunnel to use critical strain (${\varepsilon}_{01}$) calculated from a uniaxial compressive strength on tunnel displacement monitoring.

Critical illness neuromyopathy

  • Park, Soo-Hyun;Jeong, Yoon-Jung;Kim, Nam-Hee
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • Critical illness neuromyopathy (CINM) is a common but frequently underdiagnosed condition in critically ill patients that contributes to ventilator weaning failure and limb weakness in intensive care unit (ICU). CINM is subdivided into critical illness polyneuropathy and critical illness myopathy, and the occurrence of these conditions in the ICU is associated with multiple organ failure due to sepsis or certain medications. CINM survivors might have persistent functional disabilities and a poor quality of life. This situation demonstrates the need for efforts to minimize or prevent CINM in critically ill patients. This article provides a current overview of CINM and the associated clinical strategies.

A Study on RCM Approach to Catenary System of Electric Railway (전기철도 가공전차선로의 신뢰성 기반 유지보수(RCM)에 관한 연구)

  • Youn, Eung-Kyu;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1457-1465
    • /
    • 2016
  • A RCM approach to maintenance of the catenary system of electric railway is proposed. The proposed RCM approach provides a maintenance-oriented FMECA procedure to derive critical failure modes by analyzing failure effects and a RCM decision logic tree to suggest optimal maintenance works for the derived failure modes. By applying the proposed RCM procedures to the catenary system of high speed railway, it is suggested that strand breaks of dropper and voltage equalizing wire, and trolly wire wear-out are the critical failure modes for whom maintenance works based on condition monitoring should be applied instead of conventional time-based preventive maintenance. It is also proposed by reliability analysis that replacement time of dropper can be reduced from 18 years to 10 years. These results show that the proposed RCM approach can optimize the maintenance procedures of catenary system.

Successful High Flow Nasal Oxygen Therapy for Excessive Dynamic Airway Collapse: A Case Report

  • Park, Jisoo;Lee, Yeon Joo;Kim, Se Joong;Park, Jong Sun;Yoon, Ho Il;Lee, Jae Ho;Lee, Choon-Taek;Cho, Young-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.4
    • /
    • pp.455-458
    • /
    • 2015
  • Excessive dynamic airway collapse (EDAC) is a disease entity of excessive reduction of the central airway diameter during exhalation, without cartilage collapse. An 80-year-old female presented with generalized edema and dyspnea at our hospital. The patient was in a state of acute decompensated heart failure due to pneumonia with respiratory failure. We accordingly managed the patient with renal replacement therapy, mechanical ventilation and antibiotics. Bronchoscopy confirmed the diagnosis of EDAC. We scheduled extubation after the improvement of pneumonia and heart condition. However, extubation failure occurred due to hypercapnic respiratory failure with poor expectoration. Her EDAC was improved in response to high flow nasal oxygen therapy (HFNOT). Subsequently, the patient was stabilized and transferred to the general ward. HFNOT, which generates physiologic positive end expiratory pressure (PEEP) effects, could be an alternative and effective management of EDAC. Further research and clinical trials are needed to demonstrate the therapeutic effect of HFNOT on EDAC.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part II - Failure modeling and comparison with OLHF experiment

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4134-4145
    • /
    • 2023
  • This paper proposes strain-based failure model of A533B1 pressure vessel steel to simulate failure, followed by application to OECD lower head failure (OLHF) test simulation for experimental validation. The proposed strain-based failure model uses simple constant and linear functions based on physical failure modes with the critical strain value determined either using the lower bound of true fracture strain or using the average value of total elongation depending on the temperature. Application to OECD Lower Head Failure (OLHF) tests shows that progressive deformation, failure time and failure location can be well predicted.

Optimal inspection frequency to mitigate the risk of building system failure

  • Au-Yong, Cheong Peng;Ali, Azlan Shah;Ahmad, Faizah;Chua, Shirley Jin Lin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.347-352
    • /
    • 2017
  • The poor maintenance practice increases the possibility of system failure. Subsequently, the consequences of failure fall on the aspects of output, safety and healthy, environmental integrity, system quality, and customer satisfaction. Conditionbased maintenance is seen as a potential strategy to improve performance. Whereby, the key success factor of this maintenance strategy is identified as the system inspection. This study aims to investigate the association between system breakdown rate and frequency of inspection. A mixed method approach is implemented by distributing questionnaire and interviewing for data collection. Subsequently, descriptive analysis, correlation analysis and regression are adopted to analyse the collected data from 100 respondents and the results are validated with interview data of 10 interviewees. The research result establishes significant relationship between the system breakdown rate and the frequency of inspection. Additionally, the result of regression analysis confirms that the frequency of inspection is the significant predictor of system breakdown rate. Planning of accurate inspection frequency is crucial to secure the system performance. Hence, the research signifies the importance to carry out regular inspection towards the building systems and components. As a recommendation, the maintenance personnel should assess the risk criticality of the building systems. Then, continuously monitor the condition of critical building systems; regularly inspect the condition of non-critical building systems and randomly inspect all of them.

A Study on Discrete Hidden Markov Model for Vibration Monitoring and Diagnosis of Turbo Machinery (터보회전기기의 진동모니터링 및 진단을 위한 이산 은닉 마르코프 모델에 관한 연구)

  • Lee, Jong-Min;Hwang, Yo-ha;Song, Chang-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.41-49
    • /
    • 2004
  • Condition monitoring is very important in turbo machinery because single failure could cause critical damages to its plant. So, automatic fault recognition has been one of the main research topics in condition monitoring area. We have used a relatively new fault recognition method, Hidden Markov Model(HMM), for mechanical system. It has been widely used in speech recognition, however, its application to fault recognition of mechanical signal has been very limited despite its good potential. In this paper, discrete HMM(DHMM) was used to recognize the faults of rotor system to study its fault recognition ability. We set up a rotor kit under unbalance and oil whirl conditions and sampled vibration signals of two failure conditions. DHMMS of each failure condition were trained using sampled signals. Next, we changed the setup and the rotating speed of the rotor kit. We sampled vibration signals and each DHMM was applied to these sampled data. It was found that DHMMs trained by data of one rotating speed have shown good fault recognition ability in spite of lack of training data, but DHMMs trained by data of four different rotating speeds have shown better robustness.