• Title/Summary/Keyword: Critical depth

Search Result 814, Processing Time 0.025 seconds

Vibration Analysis of a Lathe Performing Non-Circular Cutting (비원형 단면의 선삭 가공시 발생하는 진동해석)

  • 신응수;박정호
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

Finite element analysis of shear critical prestressed SFRC beams

  • Thomas, Job;Ramaswamy, Ananth
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interface. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

CSFs Extraction and AHP Importance Analysis for Construction Technology Services Evaluation in terms of Construction Manager (건설사업관리자(CMr) 측면에서 건설기술용역 평가의 CSFs 추출 및 AHP 중요도 분석)

  • Yang, Jin-Kook;Hong, Seong-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.129-134
    • /
    • 2020
  • The current evaluation time period for the construction management service is the project completion or after project completion. Therefore, the construction manager has the following problems. First, it is difficult to prepare the evaluation due to the new field movement of the existing participating engineer. Next, the CM work is complex as well as extensive. Therefore, the critical success factors of the construction technology services evaluation are required as a systematic performance standard of CM work. In this study, we extracted the critical success factors that can systematically prepare the evaluation from the early stage of the project through in - depth interviews with experts. And, this study was analyze the priority of each factor by using AHP technique. As a result, the most important factors were related to the systemization of the preparation process, the construction manager work capabilities and practical construction management. And the priorities of all factors were analyzed high in the factors suggested by the owner groups. The results of this analysis are expected to provide the standards that construction management service performer carry out structured management of construction management throughout the project.

Development of a Depth and Working Load Control System for Tractor Using a Proportional Valve (비례밸브를 이용한 트랙터 경심 및 부하제어시스템 개발)

  • Lee, S.S.;Lee, J.Y.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.16-23
    • /
    • 2006
  • Depth and working load control is one of the most important technique in control system for tractor rotary implement automation. Keeping the depth consistent is critical to bring along crops and to improve the efficiency and quality of the following operations. Keeping the load of engine consistent is an essential factor for the efficiency of operation and engine protection of tractor. In this study we investigated the possibility of application of depth and working load control system for tractor using a proportional valve through field tests. Depth control was implemented by the ascent and descent of 3 point linkage for the change of setting depth. There were 4 mm and 5.2 mm control deviations for setting depths of 50mm and 100mm, respectively. Load control was operated appropriately by the ascent and of descent of 3 point link for the change of setting working load. The standard deviations between setting load and engine load were 171 rpm at 1.3 km/h and 164 rpm at 2.3 km/h tractor travel velocity. The results of experiment showed that the characteristics of response was sufficient to be used as the implement depth and working load control system for tractor using proportional valve.

Experiences of Critical Care Nurses Caring for Dying Patients (중환자실 간호사의 임종 환자 돌봄 경험)

  • Seol, Eun-Mi;Koh, Chin-Kang
    • Journal of Korean Critical Care Nursing
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Purpose : This study aimed to develop an in-depth and comprehensive understanding of the experiences of critical care nurses caring for dying patients. Method : Eleven critical care nurses with experience in caring for dying patients were recruited from four tertiary hospitals. Semi-structured face-to-face interviews were conducted between November 2016 and March 2017. The transcribed data were analyzed using qualitative content analysis to identify major themes and sub-themes that represented the experiences of critical care nurses. Results : The following six themes, and twelve sub-themes, were identified: (1) the gap between expectation and reality, (2) a distorted meaning of death, (3) repeated emotional pain and stress, (4) finding a solution alone, (5) sublimation into mission and calling, and (6) integration into one's own life. Conclusion : This study found that critical care nurses experience various psychological difficulties while caring for dying patients, and they made efforts on their own to overcome them. These findings are expected to inform the development of specialized programs to support critical care nurses to tackle these challenges, create guidelines on caring for dying patients, and help promote death education.

The influence of critical thinking disposition, deep approaches to learning and learner-to-learner interaction on nursing process confidence in nursing students, with a focus on team-based learning (간호대학생의 비판적 사고성향, 심층적 학습접근방식, 학습자간 상호작용이 간호과정 자신감에 미치는 영향: 팀 기반 학습을 중심으로)

  • Choi, Hanna;Lee, Eunseon
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.27 no.3
    • /
    • pp.251-260
    • /
    • 2021
  • Purpose: This study uses a descriptive research design to identify the influence of critical thinking disposition, deep approaches to learning, and interaction between learners on the degree of nursing process confidence for nursing students. Methods: The subjects of the study were second-year students in the Department of Nursing at a university in G city. The data included general characteristics, critical thinking disposition, deep approaches to learning, learner-to-learner interaction, and nursing process confidence were analyzed utilizing an independent t-test, one-way ANOVA, and Scheffe's test to identify differences in the variables according to general characteristics. To identify the correlation between the factors related to the nursing process and nursing process confidence, Pearson's correlation was analyzed, and hierarchical regression was used to determine the factors affecting the confidence of the subject's nursing process. Results: Gender, critical thinking disposition, and in-depth learning approach were statistically significant as factors affecting the nursing process confidence of nursing students, and these factors were shown to explain 62% of nursing course performance (F=23.80, p<.001), among which in-depth learning access has the greatest influence (β=.41, p<.001). Conclusion: Critical thinking disposition and deep approaches to learning arbitration program development are necessary to improve nursing students' nursing process confidence.

Effects of Duration and Time Distribution of Probability Rainfall on Paddy Fields Inundation (설계강우의 지속시간 및 시간분포에 따른 배수개선 농경지 침수 영향 분석)

  • Jun, Sang-Min;Kim, Kwi-Hoon;Lee, Hyunji;Kang, Ki-Ho;Yoo, Seung-Hwan;Choi, Jin-Yong;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.47-55
    • /
    • 2022
  • The objective of this study was to analyze the effect of the duration and time distribution of probability rainfall on farmland inundation for the paddy fields in the drainage improvement project site. In this study, eight drainage improvement project sites were selected for inundation modeling. Hourly rainfall data were collected, and 20- and 30-year frequency probability rainfalls were estimated for 14 different durations. Probability rainfalls were distributed using Intensity-Duration-Frequency (IDF) and Huff time distribution methods. Design floods were calculated for 48 hr and critical duration, and IDF time distribution and Huff time distribution were used for 48 hr duration and critical duration, respectively. Inundation modeling was carried out for each study district using 48 hr and critical duration rainfalls. The result showed that six of the eight districts had a larger flood discharge using the method of applying critical duration and Huff distribution. The results of inundation depth analysis showed similar trends to those of design flood calculations. However, the inundation durations showed different tendencies from the inundation depth. The IDF time distribution is a distribution in which most of the rainfall is concentrated at the beginning of rainfall, and the theoretical background is unclear. It is considered desirable to apply critical duration and Huff time distribution to agricultural production infrastructure design standards in consideration of uniformity with other design standards such as flood calculation standard guidelines.

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF

Numerical modeling of dynamic compaction process in dry sands considering critical distance from adjacent structures

  • Pourjenabia, Majid;Hamidi, Amir
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • Dynamic compaction (DC) is a useful method for improvement of granular soils. The method is based on falling a tamper (weighting 5 to 40 ton) from the height of 15 to 30 meters on loose soil that results in stress distribution, vibration of soil particles and desirable compaction of the soil. Propagation of the waves during tamping affects adjacent structures and causes structural damage or loss of performance. Therefore, determination of the safe or critical distance from tamping point to prevent structural hazards is necessary. According to FHWA, the critical distance is defined as the limit of a particle velocity of 76 mm/s. In present study, the ABAQUS software was used for numerical modeling of DC process and determination of the safe distance based on particle velocity criterion. Different variables like alluvium depth, relative density, and impact energy were considered in finite element modeling. It was concluded that for alluvium depths less than 10 m, reflection of the body waves from lower boundaries back to the soil and resonance phenomenon increases the critical distance. However, the critical distance decreases for alluvium depths more than 10 m. Moreover, it was observed that relative density of the alluvium does not significantly influence the critical distance value.

Study on Tendency of Echo Sounding by Turbidity (탁도에 따른 Echo Sounder 측심특성연구)

  • Kim, Yong-Bo;Kim, Jin-Hu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.148-149
    • /
    • 2005
  • In this study, among the precision decline main causes of sounding, I suggested the characteristics of sounding data acquired by echo sounder with increasing of turbidity For this, I acquired sounding data by inputting turbidity inducer artificially in artificial water tank. And then achieved regression analysis. Conclusion are as following : Sounding Capabilities can be divided into three ranges according to the turbidity : normal range, critical range and the range where data can not be obtained by an echo sounder

  • PDF