• 제목/요약/키워드: Critical angular velocity

검색결과 28건 처리시간 0.028초

수직자장하에서 원관내 자성유체의 거동에 관한 연구 (A Study on the Flow Behavior of Magnetic Fluids in a Circular Pipe with a Vertical Magnetic Field)

  • 박정우;유신오;서이수
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.25-32
    • /
    • 1999
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, vorticity, internal angular momentum and induced magnetization as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

완전한 인볼류트 베벨기어쌍의 기구학적 고찰 및 형상 모형화 (Kinematical Investigation and Geometry Modeling of the Perfect Involute Bevel Gearsets)

  • Park, N.G.
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.46-56
    • /
    • 1995
  • As demands on the precision bevel gears are increased in the related industry, the exact kinematical investigations of a pair of spherical involute bevel gears are required for the computer aided design. The exact angular velocity ratio based on the characteristics of the spherical involute tooth is derived and verified from the relationship between rotational angles. Elementary kinematics of the gearsets is investigated by applying the transformation of the coordinate systems. The tooth contact lines based on logarithmic tooth-wise curve are examines in three dimentional space. Contact ratio is formulated and simulated according to the system parameters such as shaft angles, pressure angle, and spiral angles. The condition of teeth interference is dervied and the critical numbers of gear teeth are calculated. The whole surface geometry of a spiral bevel gearsets are discretized and visualized by a computer graphic tool.

  • PDF

밸런스샤프트의 회전체역학 해석 (Rotordynamic Analysis of Balance Shafts)

  • 노종원;신범식;박흥준;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.531-536
    • /
    • 2006
  • In four cylinder engine, the second order inertia force occurs due to the reciprocating parts of the cylinder. Because the magnitude of the inertia force is proportional to a square of the angular velocity of crank shaft, engine gets suffered from vibration excited by unbalanced inertia force in high speed. This vibration excited by the unbalanced inertia force can be canceled by applying a balance shaft. Balance shaft has one or more unbalance mass and rotates twice quickly than the crank shaft. In this paper, an unbalanced force caused by the rotating of unbalance mass of balance shafts was calculated. The directional equivalent stiffness and damping coefficients of the journal bearing of balance shafts was calculated. Equations of rotational vibration modes were derived using directional stiffness and damping coefficients. The dynamic stability of balance shafts was analyzed and evaluated for two type models using the equivalent stiffness and damping coefficients. An efficient procedure to he able to evaluate dynamic stability and design optimal balance shaft was proposed.

  • PDF

레일리의 실험 음향학 연구의 성과: 도구의 개선과 정밀성의 증진 (Accomplishments of Rayleigh's Experimental Research: Improvement of Instruments and Enhancement of Precision)

  • 구자현
    • 한국음향학회지
    • /
    • 제22권2호
    • /
    • pp.113-120
    • /
    • 2003
  • 레일리는 수학적 이론에 능했을 뿐 아니라 실험 음향학자로서 중요한 기여를 했다. 그는 리케의 열에 의한 음발생 장치와 노래하는 불꽃을 순음발생 장치로 개선했다. 무엇보다는 그가 만든 인공 새소리 발생장치는 실험용음원의 개선에서 결정적으로 기여했다. 이 장치는 초음파를 발생시켜 실험실 안에서 소리의 직진, 굴절, 회절, 간섭의 실험을 교란 없이 수행할 수 있게 해주었다. 또한 레일리는 소리의 검출장치로서 민감 불꽃을 개선했다. 그는 또한 정밀한 회전속도 조절장치 (소리바퀴)와 소리의 절대 세기를 측정하는 장치 (레일리 원반)를 만들어 실험 음향학의 정밀성의 증진에 기여했다.

냉동, 공조용 로터리 콤프레서의 윤활 특성 제1보;롤링 피스톤의 거동해석 (The Lubrication Characteristics of Rotary Compresssor for refrigeration & air-conditioning (Part I; The analysis of Rolling Piston behavior ))

  • 조인성;김진문;백일현;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제23회 학술대회
    • /
    • pp.7-16
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system( r & a system ) in modern industries brings attention to the urgency of development as a core technology in the area. And it required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to research about the lubrication characteristics of refrigerant compressor which is the core thechnology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoetical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. And the Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

센서를 이용한 사행 운전 검출 시스템 설계 및 구현 (Design and Implementation of a System to Detect Zigzag Driving using Sensor)

  • 정선미;김계희;문형진;김창근
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.305-311
    • /
    • 2016
  • 최근 자동차 업계는 무선 인터넷 기술의 발달과 응용의 확산으로 자율 주행의 연구가 활발히 진행 중에 있으나 교통사고는 아직도 해결되지 않는 부분이다. 사고의 요인으로는 졸음운전, 운전자의 실수, 환경적인 요소, 잘못된 도로 구조 등이 있으며 사고 원인의 하나인 운전자의 운전 행태와 특성은 교통사고에 큰 영향을 미친다. 본 논문에서는 자율 주행 및 자가 운전을 하는 경우에 발생 할 수 있는 교통사고에서 사고발생 전에 나타날 수 있는 사행운전의 특성을 판단하기 위한 연구를 수행하였다. 기존 연구에서는 영상기법이나 1,2차로의 운전행태로 횡방향 각속도 변화의 특성으로 사행 운전을 판단하였으나 본 논문은 센서의 값을 이용하여 횡방향의 이동거리와 임계 범위를 설정하여 사행 운전을 검출하는 연구를 진행하였다.

The Effect of Exercise Intensity on Muscle Activity and Kinematic Variables of the Lower Extremity during Squat

  • Jung, Jae-Hu;Chae, Woen-Sik
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.197-203
    • /
    • 2017
  • Objective: The purpose of this study was to determine how exercise intensity affects muscle activity and kinematic variables during squat. Method: Fifteen trainers with >5 years of experience were recruited. For the electromyography (EMG) measurements, four surface electrodes were attached to both sides of the lower extremity to monitor the rectus femoris (RF) and biceps femoris. Three digital camcorders were used to obtain three-dimensional kinematics of the body. Each subject performed a squat in different conditions (40% one-repetition maximum [40%1RM], 60%1RM, and 80%1RM). For each trial being analyzed, three critical instants and two phases were identified from the video recording. For each dependent variable, one-way analysis of variance with repeated measures was used to determine whether there were significant differences among the three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: The results showed that the average integrated EMG values of the RF were significantly greater in 80%1RM than in 40%1RM during the extension phase. The temporal parameter was significantly longer in 80%1RM than in 40%1RM and 60%1RM during the extension phase. The joint angle of the knee was significantly greater in 80%1RM than in 40%1RM at flexion. The range of motion of the knee was significantly less in 80%1RM than in 40%1RM and 60%1RM during the flexion phase and the extension phase. The angular velocity was significantly less in 80%1RM than in 40%1RM and 60%1RM during the extension phase. Conclusion: Generally, the increase of muscle strength decreases the pace of motion based on the relation between the strength and speed of muscle. In this study, we also found that the increase of exercise intensity may contribute to the increase of the muscle activity of the RF and the running time in the extension phase during squat motion. We observed that increased exercise intensity may hinder the regulation of the range of motion and joint angle. It is suitable to perform consistent movements while controlling the proper range of motion to maximize the benefit of resistance training.