• 제목/요약/키워드: Critical angle

검색결과 769건 처리시간 0.025초

A Light Incident Angle Stimulated Memristor Based on Electrochemical Process on the Surface of Metal Oxide

  • 박진주;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2014
  • Memristor devices are one of the most promising candidate approaches to next-generation memory technologies. Memristive switching phenomena usually rely on repeated electrical resistive switching between non-volatile resistance states in an active material under the application of an electrical stimulus, such as a voltage or current. Recent reports have explored the use of variety of external operating parameters, such as the modulation of an applied magnetic field, temperature, or illumination conditions to activate changes in the memristive switching behaviors. Among these possible choices of signal controlling factors of memristor, photon is particularly attractive because photonic signals are not only easier to reach directly over long distances than electrical signal, but they also efficiently manage the interactions between logic devices without any signal interference. Furthermore, due to the inherent wave characteristics of photons, the facile manipulation of the light ray enables incident light angle controlled memristive switching. So that, in the tautological sense, device orienting position with regard to a photon source determines the occurrence of memristive switching as well. To demonstrate this position controlled memory device functionality, we have fabricated a metal-semiconductor-metal memristive switching nanodevice using ZnO nanorods. Superhydrophobicity employed in this memristor gives rise to illumination direction selectivity as an extra controlling parameter which is important feature in emerging. When light irradiates from a point source in water to the surface treated device, refraction of light ray takes place at the water/air interface because of the optical density differences in two media (water/air). When incident light travels through a higher refractive index medium (water; n=1.33) to lower one (air; n=1), a total reflection occurs for incidence angles over the critical value. Thus, when we watch the submerged NW arrays at the view angles over the critical angle, a mirror-like surface is observed due to the presence of air pocket layer. From this processes, the reversible switching characteristics were verified by modulating the light incident angle between the resistor and memristor.

  • PDF

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Spatial flow structure around a smooth circular cylinder in the critical Reynolds number regime under cross-flow condition

  • Raeesi, Arash;Cheng, Shaohong;Ting, David S.K.
    • Wind and Structures
    • /
    • 제11권3호
    • /
    • pp.221-240
    • /
    • 2008
  • The spanwise flow structure around a rigid smooth circular cylinder model in cross-flow has been investigated based on the experimental data obtained from a series of wind tunnel tests. Surface pressures were collected at five spanwise locations along the cylinder over a Reynolds number range of $1.14{\times}15^5$ to $5.85{\times}10^5$, which covered sub-critical, single-bubble and two-bubble regimes in the critical range. Separation angles were deduced from curve fitted to the surface pressure data. In addition, spanwise correlations and power spectra analyses were employed to study the spatial structure of flow. Results at different spanwise locations show that the transition into single-bubble and two-bubble regimes could occur at marginally different Reynolds numbers which expresses the presence of overlap regions in between the single-bubble regime and its former and later regimes. This indicates the existence of three-dimensional flow around the circular cylinder in cross-flow, which is also supported by the observed cell-like surface pressure patterns. Relatively strong spanwise correlation of the flow characteristics is observed before each transition within the critical regime, or formation of first and second separation-bubbles. It is also noted that these organized flow structures might lead to greater overall aerodynamic forces on a circular cylinder in cross-flow within the critical Reynolds number regime.

Effects of elastic medium on buckling of microtubules due to bending and torsion

  • Taj, Muhammad;Hussain, Muzamal;Afsar, Muhammad A.;Safeer, Muhammad;Ahmad, Manzoor;Naeem, Muhammad N.;Badshah, Noor;Khan, Arshad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.491-501
    • /
    • 2020
  • Microtubules buckle under bending and torsion and this property has been studied for free microtubules before using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical buckling moment is about 6.04 nNnm for which the corresponding curvature is about θ = 1.33 rad /㎛ for embedded MTs, and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/㎛. Our results well proved the experimental findings.

Response of transmission line conductors under different tornadoes

  • Dingyu Yao;Ashraf El Damatty;Nima Ezami
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.179-189
    • /
    • 2023
  • Multiple studies conducted in the past evaluated the conductor response under one tornado wind field, while the performance of transmission lines under different tornado wind fields still remains unknown. Thus, the objective of this paper is to estimate the variation in the conductor's critical longitudinal and transverse reactions under different tornado wind fields, as well as providing the corresponding critical tornado configurations. The considered full-scale tornadoes are the Spencer, South Dakota, 1998, the Stockton, Kansas, 2005 and the Goshen County, Wyoming, 2009. Computational Fluid Dynamics (CFD) simulations were previously conducted to develop these wind fields. All tornadoes have been rescaled to have a common velocity matching the upper limit of the F2 Fujita scale. Eight conductor systems, each including six spans, are considered in this paper. For each conductor, parametric studies are conducted by varying the location of the three tornado wind fields relative to the tower of interest, therefore the peak reactions associated with each tornado are determined. A semi-analytical closed-form solution, previously developed and validated, is used to calculate the reactions. The study conducted in this paper can be divided into two parts: In the first part, a parametric study considering a wide range of tornado locations is conducted. In the second part, the parametric study focuses on the tornado location leading to the critical tangential velocity on the tower. Based on this extensive parametric study, a critical tornado defined as the Design Tornado and its critical locations, tornado distance R = 125 m, tornado angle 𝜃 = 15° and 30°, are recommended for design purposes.

시뮬레이션에 의한 유체 유동 파이프 계의 곡관부의 각도 변화에 따른 고유진동수 고찰 (A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Elbow Angles)

  • 최명진;장승호
    • 한국시뮬레이션학회논문지
    • /
    • 제10권1호
    • /
    • pp.63-65
    • /
    • 2001
  • To investigate the natural frequencies of curved piping systems with various elbow angles conveying flow fluid, a simulation is performed considering Initial tension due to the inside fluid. The system is analyzed by finite element method utilizing straight beam element. Elbow part is meshed using 4 elements, and the initial tension is considered by inserting equivalent terms into the stiffness matrix. Without considering the initial tension, the system becomes unstable, that is, the fundamental natural frequency approaches to zero value fast, as the flow velocity reaches critical value. With the initial tension terms, the system becomes stable where there is no abrupt decrease of the fundamental natural frequency. The change rate of the natural frequency with respect to the flow velocity reduces. As elbow angle increases, the system becomes stiffer, then around 150 degrees of the elbow angle the natural frequency has the largest value, the value decreases after the angle of the largest natural frequency. When angle is between 170 degrees and 179 degrees, the natural frequency is very sensitive. This means that small change of angle results in great change of natural frequency, which is expected to be utilized in the control of the natural frequency of the piping system conveying flow fluid.

  • PDF

확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 2 (Structure and Characteristics of Diffusion Flaame behind a Bluff-body in a Divergent Flow(II))

  • 최병륜;이중성
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.2981-2994
    • /
    • 1995
  • In order to elucidate the effects of positive pressure gradient on flame properties, structure and stabilization, an experimental study is made on turbulent diffusion flame stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. In this paper, stabilization, characteristics and flame structure are examined by varying the divergent angle of duct. Temperature, ion current and Schlieren photographs were measured. It is found that critical divergent angle is expected to be about 8 ~ 12 degree through blow-off velocity pattern to divergent angle and the positive pressure gradient influences the flame temperature, intensity of ion current and eddy structure behind the rod. With the increase of divergent angle, typical temperature of recirculation zone is low but intensity of ion current is high in shear layer behind rod. Energy distributions of fluctuating temperature and ion current signals turn up low frequency corresponding to large scale eddies but high frequency corresponding to small scale eddies as well as low with the increase of divergent angle. Therefore the flame structure becomes a typical distributed-reacting flame.

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • 한국통신학회논문지
    • /
    • 제35권12C호
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

Reflection of a gaussian beam from a planar dielectric interface

  • Lee, Yeon H.
    • 한국광학회지
    • /
    • 제7권3호
    • /
    • pp.200-206
    • /
    • 1996
  • When a Gaussian beam is incident to a planar dielectric interface at an angle other than Brewster angle or the critical angle of total reflection, we derive the six nonspecular effects of rotation, lateral shift, focal shift, Rayleigh length change, magnitude and phase changes in the complex amplitude of the reflected beam simultaneously by taking account of the boundary condition. In the derivation we assume a Gaussian beam of fundamental mode to emerge from the interface and then match at the interface the constant, linear, and quadratic variations of the amplitude and phase of the reflected beam with those of the incident beam multiplied by the reflection coefficient. Our calculation shows that the six nonspecular effects can result from a linear variation of the natural logarithm of the reflection coefficient at the interface.

  • PDF