• Title/Summary/Keyword: Critical Velocity

Search Result 835, Processing Time 0.027 seconds

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

A Study on the Optimum Generation Condition of Ultrasonic Guided Waves for Insulation Pipelines (단열된 배관의 유도초음파 최적 발생조건 선정에 관한 연구)

  • Lee, Dong-Hoon;Cho, Hyun-Joon;Kang, To;Park, Dong-Jun;Kim, Byung-Duk;Huh, Yun-Sil;Lee, Yeon-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.50-57
    • /
    • 2016
  • Pipeline is one of the most abundant components in petrochemical plant. It plays a critical role in transporting fluids. Some pipelines are thermally insulated by wrapping them with insulating materials to prevent the loss of energy. However, when corrosion begins under insulation, it cannot be easily seen without unwrapping the cover, and thus corrossion should be detected using a non-destructive ways such as ultrasound guided wave. In this paper, the piping where the CUI (Corrosion Under Insulation) which occurs in the insulation parts guided waves effectively the optimum condition which is theoretical for selected guided waves phase velocity dispersion curve and wave-structure. The results of this study are expected to be directly utilized for onsite inspection of pipeline's CUI in many petrochemical plants.

Design of Experiment and Analysis Method for the Integrated Logistics System Using Orthogonal Array (직교배열을 이용한 통합물류시스템의 실험 설계 및 분석방법)

  • Park, Youl-Kee;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5622-5632
    • /
    • 2011
  • This paper presents the simulation design and analysis of Integrated Logistics System(ILS) which is operated by using the AGV(Automated Guided Vehicle). To maximize the operation performances of ILS with AGV, many parameters should be considered such as the number, velocity, and dispatching rule of AGV, part types, scheduling, and buffer sizes. We established the design of experiment in a way of Orthogonal Array in order to consider (1)maximizing the throughput; (2)maximizing the vehicle utilization; (3)minimizing the congestion; and (4)maximizing the Automated Storage and Retrieval System(AS/RS) utilization among various critical factors. Furthermore, we performed the optimization by using the simulation-based analysis and Evolution Strategy(ES). As a result, Orthogonal Array which is conducted far fewer than ES significantly saved not only the time but the same outcome when compared after validation test on the result from the two methods. Therefore, this approach ensures the confidence and provides better process for quick analysis by specifying exact experiment outcome even though it provides small number of experiment.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+ (RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링)

  • Kim, Jun Song;Seo, Il Won;Shin, Jaehyun;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.495-507
    • /
    • 2021
  • With the recent industrial development, accidental pollution in riverine environments has frequently occurred. It is thus necessary to simulate pollutant transport and dispersion using water quality models for predicting pollutant residence times. In this study, we conducted a field experiment in a meandering reach of the Sum River, South Korea, to validate the field applicability and prediction accuracy of RAMS+ (River Analysis and Modeling System+), which is a two-dimensional (2D) stream flow/water quality analysis program. As a result of the simulation, the flow analysis model HDM-2Di and the water quality analysis model CTM-2D-TX accurately simulated the 2D flow characteristics, and transport and mixing behaviors of the pollutant tracer, respectively. In particular, CTM-2D-TX adequately reproduced the elongation of the pollutant cloud, caused by the storage effect associated with local low-velocity zones. Furthermore, the transport model effectively simulated the secondary flow-driven lateral mixing at the meander bend via 2D dispersion coefficients. We calculated the residence time for the critical concentration, and it was elucidated that the calculated residence times are spatially heterogeneous, even in the channel-width direction. The findings of this study suggest that the 2D water quality model could be the accidental pollution analysis tool more efficient and accurate than one-dimensional models, which cannot produce the 2D information such as the 2D residence time distribution.

A Recommendation of the Technique for Measurement and Analysis of Passive Surface Waves for a Reliable Dispersion Curve (신뢰성 있는 분산곡선의 결정을 위한 수동표면파 측정 및 분석기법의 제안)

  • Yoon, Sung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.47-60
    • /
    • 2007
  • Conventional active surface wave measurements performed using a transient or continuous source are often limited in the maximum depth of penetration due to the difficulty of generating low-frequency energy with reasonably portable sources. This limitation may inhibit accurate seismic site response calculations because of the inability to define deeper subsurface structure. By measuring surface wave generated by passive sources including microtremors and cultural noise, it is possible to overcome this problem and develop soil stiffness profiles to much larger depth. Reliability of dispersion estimates from the passive surface wave measurements is critical to present reliable shear wave velocity profiles and can be improved by the measurements and analyses of passive surface waves based on correct understanding of systematic errors included in passive dispersion data. In this study, the systematic errors caused by poor wavenumber resolution and energy leakage into sidelobes in passive tests are mainly explored. Recommendations for reliable passive surface wave measurements and dispersion estimates are presented and illustrated at a site in San Jose, California, U.S.

River Embankment Stability against Hydraulic Piping Failure in Korea (우리나라 하천제방에 대한 내부침식 파괴 연구 : 사례연구)

  • Kwon, Kyo-Keun;Han, Sang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.33-42
    • /
    • 2006
  • Lots of river embankments or levees in Korea are quite so old and unknown the origin even. The river deposits, moreover, obtainable easily somewhere were used for materials of embankment without any technical considerations such as the influence soil properties and construction methods on embankment stability. It's natural that safety would be threatened if the water level rises due to flood or rainfall when it comes to abnormal weather conditions, especially. From this point of view, enlargement of embankment, irrigation works, etc. are in progress recently at the situation from a reinforcement work. However, taking influence of soil properties and construction methods on embankment stability into account against cracking or piping is still insufficient. Fragmentary design criteria or irrational construction methods are applied rather as the case may be. In this study, therefore, a way to estimate piping and cracking resistance (Sherard, 1953) has been introduced and reevaluated for practical use with an eye to material properties and its applicability to piping-experienced embankments was examined. Piping possibility was also examined in the present design criteria and compared. In view of the results achieved, it reflects that both yield piping possibility. But it's still necessary to complement how to judge and verify piping resistance of given soils with gradation curves by the representative curve, quantitatively and that piping resistance should consider compaction effects as well.

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing (충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가)

  • Rizky Pitajeng;Julfikhsan Ahmad Mukhti;Seong-Hoon Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.

The Clinical and Genetic Characteristics of Three Korean Patients with Glycogen Storage Disease Type V (McArdle Disease) (세 명의 대한민국 제 V형 당원축적근육병(McArdle 병) 환자들의 유전학적 및 임상적 특성 보고)

  • Lee, Sunghee;Kang, Eungu;Kim, Yoonmyung;Lee, Beom Hee;Kim, Gu Hwan;Yoo, Han Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • Purpose: McArdle disease, glycogen storage disease type V (GSD V), is one of the most common adolescent-onset glycogen storage diseases. It is caused by recessive mutations in PYGM encoding myophosphorylase, which is critical to glycogen metabolism. Since only a few korean patients have been reported, we will observe the clinical and genetic features of three korean patients with McArdle disease. Methods: We retrospectively reviewed the medical records of three patients with genetically confirmed McArdle disease, including the results of forearm ischemic exercise test, electromyogram, nerve conduction velocity, muscle biopsy, and PYGM analysis in peripheral leukocytes. Results: All three cases were males and their age of symptom onset was 12, 5, 14 years old, respectively. A high basal level of serum creatine kinase was noted in all three patients. They experienced the recurrent episodes of rhabdomyolysis, but second wind phenomenon was not definite. In muscle biopsy, subsarcolemmal space vacuoles including periodic acid schiff stained materials were found in two patients, while no evidence of glycogen storage disease was found in the other. A total of five different mutations, $p.Arg50^*$, p.Trp798Arg, $p.Arg50^*$, p.Glu779del, $p.Asp511Thrfs^*28$ and p.Phe710del, were found in three patients. Avoidance of isometric exercise, aerobic exercise and glucose intake before each exercise were recommended for all patients. Conclusion: The three Korean patients with McArdle disease showed the typical manifestations of the condition. The most mutations were private. Therefore, identification of more cases with long-term follow-up will be required to understand the clinical and genetic features of this disease among Korean population.

  • PDF

An Exploratory Study of REID Benefits for Apparel Retailing (의류소매업에서의 RFID 이점에 대한 탐색적 연구)

  • Kim, Hae-Jung;Kim, Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.12 s.159
    • /
    • pp.1697-1707
    • /
    • 2006
  • Relentless advances in information technology are constantly transforming market dynamics of the retail industry. RFID is an emerging innovative technology that can reduce labor costs, improve inventory control and increase sales by effective business processes. Apparel retailers need to recognize the benefits of RFID and identify critical success factors. By focusing on apparel retailers, this study attempts (1) to identify the reality of RFID associated with benefits; and (2) to prospect the implementation of RFID in apparel retailing. We conducted a focus group interview with selected six panels who were experts of retail industry in the United States to obtain data regarding RFID attributes. Content analysis was used to generate related excerpts and classify 31 attributes of RFID benefits from the meaningful 173 responses. For experience of RFID, retailers were familiar with RFID technology and expressed the belief that RFID basically would support an existing retail system for speed to markets. However, retailers addressed the level of experience with RFID technology that they were still in the early adoption stage among few innovative companies. The content analysis identified five dimensions of RFID benefits for apparel retailing: Visibility and Velocity, Revenue Enhancement, Customer Service, Security, and Employee Productivity. This result lends support to the belief that RFID has a significant potential to streamline supply chain management, store operation and customer service for apparel retailing. This study provides intellectual and managerial implications far practitioners and researchers by postulating the effective use of RFID in the apparel retail industry.