• Title/Summary/Keyword: Critical Temperature

Search Result 2,706, Processing Time 0.032 seconds

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

New processing technique of TFA-MOD YBCO coated conductors using the '211' process (211 공정을 이용한 새로운 TFA-MOD YBCO 박막 선재 제조)

  • Lim, Jun-Hyung;Jang, Seok-Hern;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Park, Eui-Cheol;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.140-144
    • /
    • 2006
  • We fabricated the YBCO films on single crystal $LaAlO_3$ substrates via a metal organic deposition (MOD) process. In the process, $Y_2Ba_1Cu_1O_x$ and $Ba_3Cu_5O_8$ powders were dissolved in trifluoroacetic acid (TFA) followed by calcining and firing heat treatments. To evaluate the effects of the firing temperature on YBCO phase formation and critical properties, the films were fired at $750^{\circ}C,\;775^{\circ}C\;and\;800^{\circ}C$ after calcining at $430^{\cric}C$. Microstructure observation indicated that a crack-free surface formed and a strong biaxial texture was developed. The FWHM of out-of-plane texture was measured to be in the range of $4.3^{\cric}-7.0^{\circ}$ for all the films. When the YBCO film was fired at $775^{\cric}C$, it had the highest critical properties: 88.5 K of critical temperature and 16 A/cm-width of critical current ($1MA/cm^2$ as critical current density). On the other hand, those properties were degraded as firing at $750^{\circ}C\;and\;800^{\circ}C$. It is considered that the improved critical values are partly owing to dense and homogeneous microstructure, strong texture, and high oxygen content.

  • PDF

Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model

  • Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2001-2006
    • /
    • 2009
  • Temperature dependence of the critical micelle concentration (CMC), $x_{CMC}$, in micellization can be described by ln $x_{CMC}$ = A + BT + C lnT + D/T, which has been derived statistical-mechanically. Here A, B, C, and D are fitting parameters. The equation fits the CMC data better than conventionally used polynomial equations of temperature. Moreover, it yields the unique(exponent) value of 2 when the CMC is expressed in a power-law form. This finding is quite significant, because it may point to the universality of the thermal behavior of CMC. Hence, in this article, the nature of the equation ln $x_{CMC}$ = A + BT + C lnT + D/T is examined from a lattice-theory point of view through the Flory-Huggins model. It is found that a linear behavior of heat capacity change of micellization is responsible for the CMC equation of temperature.

An experimental study on the evaporation of paraffin family fuel droplet under high temperature and high pressure (고온 고압기류중을 비행하는 파라핀계 연료액적의 증발에 관한 연구)

  • ;川口修
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2125-2131
    • /
    • 1991
  • Evaporation rate constant, obtained by in this experimental study, of freely falling liquid fuel droplet on the condition of hot and pressurized environment are converted to critical evaporation constant according to Eq. of Ranz and Marshall. Critical evaporation constant, on constant environment pressuire, actively increase almost linearly with environment temperature increasing, but, on constant temperature, increases more or less with pressure increasing. Multycomponent droplet mixed with the fine fuel having a different of boiling point evaporate in order to boiling point, and each evaporation rate constant of mixed fuel equal to each fuel.

Redox Reaction on Polarization Curve Variations of Polymer with Enzymes

  • Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.165-171
    • /
    • 2000
  • Experiments were carried out to measure variations in the oxidation potential and current density using the polarization curves of polycarbonate. The results were then examined to identify the influences affecting the oxidation potential related to various conditions, such as temperature, pH, and oxydase(citrate and lipase). The lines representing the active anodic and cathodic dissolution shifted only slightly in the potential direction relative to temperature, pH, and the effect of the enzyme. The Tafel slope for the anodic and cathodic dissolution was determined such that the reversibility polarization was indicated as being effected by various conditions. The slope of the polarization curves describing the active-to-passive transition region shifted noticeably in their direction. Also, by varying the conditions, the optimum conditions for the most ready transform were identified, including temperature, pH, oxidation rate, and resistance of oxidation potential. The critical oxidation sensitivity(I(sub)r/I(sub)f) of the anodic current density peak and maximum passive current density was also determined, which is used in measuring the critical corrosion sensitivity of a polycarbonate.

  • PDF

A Study on the operational characteristics of Thermal.Current Resistance of 3 phase HTS Cable under Unbalanced load operation (3상 초전도케이블의 불평형 부하운전시 열.전류 저항에 의한 운전특성연구)

  • Lee, Geun-Joon;Hwang, Si-Dole;Lee, Hyun-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.189-1-190-1
    • /
    • 2008
  • A high temperature superconducting(HTS) power cable is available for high capacity current in normal condition. But resistance was appeared to operate unbalance load by thermal current characteristic. This characteristic of HTS power cable used to design for unstated condition. And than, It used to understand and analyze characteristic of power cable thermal and critical current. This study appeared that quench resistance reason from shield and former current rise to superconductor(SC) current. The resistance of SC occurred that the cable temperature rise to fault current after decreased critical current. The quench resistance of SC increased in temperature or decreased in critical current. So the quench resistance of SC correlated with resistance of both shield and former current. It need to sufficiently influenced the parameters of HTS cable design.

  • PDF

Design and Fabrication of 5 T HTS Insert Magnet (5 T급 고온초전도마그넷의 설계 및 제작)

  • Ku, M.H.;Kim, D.L.;Choi, Y.S.;Cha, G.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.28-32
    • /
    • 2012
  • The critical current of the HTS(High Temperature Superconductor) tape is governed by cooling temperature, magnetic field and its angle to HTS tape originated from its geometrical structure. At the HTS coil design stage, the critical current of the coil is calculated by considering the Ic-B characteristics of the 2G tape and the operating current is determined based on the critical current. The operating current and the structure of the 5 T coil are suggested through the FEM (Finite Elements Method) analysis and calculation. As a part of our on-going research on a 20 T LTS/HTS magnet, we have designed and constructed a 5 T HTS insert coil and tested it in liquid helium temperature.

The Effect of Temperature on the Critical Micelle Concentration of Cationic Surfactant for Chemical Dispersants (유처리제용 양이온 계면찰성제의 임계미셀농토에서 온도의 효과)

  • kim, Yeoung-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.145-148
    • /
    • 2008
  • Cationic surfactant can be used as cosmetics and chemical dispersants. The variation of critical micelle concentration (CMC) with temperature over the range $40^{\circ}C$ to $60^{\circ}C$ for N-octadecyl pyridinium bromide was measured by drop methods. Thermodynamic quantities such as free energy, enthalpy, entropy and heat capacity for micellization of N-octadecyl pyridinium bromide in water were calculated by fourth-degree polynominal equation In the result, free energy change was decreased generally by the increment of temperature.

  • PDF

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Critical Pitting Temperature of 2205 Duplex Stainless Steels Using Immersion and Electrochemical Polarization Test Methods (침지시험법 및 전기화학적 분극법에 의한 2205 이상 스테인리스강의 임계공식온도 측정 비교)

  • Shin Jae-Ho;Lee Jae-Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2006
  • Although stainless steels have the excellent corrosion resistance by passive film, they are susceptible to pitting corrosion in the environment containing halogen elements such as chloride ions. The resistance to pitting corrosion can be evaluated by measuring the critical pitting temperature (CPT). CPT values can be obtained using immersion, potentiodynamic and potentiostatic polarization test methods. Results on duplex 2205 stainless steels showed that CPT values were measured as $50^{\circ}C,\;55^{\circ}C\;and\;61^{\circ}C$, respectively for immersion, potentiodynamic and potentiostatic polarization test methods, depending upon the different test methods, even though the difference between CPT values are not much.