• Title/Summary/Keyword: Critical Technology Element

Search Result 396, Processing Time 0.023 seconds

Analysis of Densification Behavior of Magnesium Powders in Extrusion using the Critical Relative Density Model (임계상대밀도모델을 이용한 마그네슘분말의 압출공정 치밀화 거동)

  • Yoon, Seung-Chae;Chae, Hong-Jun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.50-55
    • /
    • 2009
  • Numerical simulations of the powder extrusion need an appropriate pressure-dependent constitutive model for densification modeling of the magnesium powders. The present research investigated the effect of representative powder yield function of the critical relative density model. We could obtain reasonable physical properties of pure magnesium powders using cold isostatic pressing. The proposed densification model was implemented into the finite element code. The finite element analysis was applied to simulation of powder extrusion of pure magnesium powder in order to investigate the densification and processing load at room temperature.

Stability of a slender beam-column with locally varying Young's modulus

  • Kutis, Vladimir;Murin, Justin
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.15-27
    • /
    • 2006
  • A locally varying temperature field or a mixture of two or more different materials can cause local variation of elasticity properties of a beam. In this paper, a new Euler-Bernoulli beam element with varying Young's modulus along its longitudinal axis is presented. The influence of axial forces according to the linearized 2nd order beam theory is considered, as well. The stiffness matrix of this element contains the transfer constants which depend on Young's modulus variation and on axial forces. Occurrence of the polynomial variation of Young's modulus has been assumed. Such approach can be also used for smooth local variation of Young's modulus. The critical loads of the straight slender columns were studied using the new beam element. The influence of position of the local Young's modulus variation and its type (such as linear, quadratic, etc.) on the critical load value and rate of convergence was investigated. The obtained results based on the new beam element were compared with ANSYS solutions, where the number of elements gradually increased. Our results show significant influence of the locally varying Young's modulus on the critical load value and the convergence rate.

A Study on Detection of a Critical Spot and the Securing Safety Method of CFRP Bicycle Forks by Finite Element Method (유한요소법을 이용한 CFRP 자전거 포크의 취약부 탐색 및 안전성 확보 방안 연구)

  • Lee, Su-Yeong;Lee, Nam Ju;Choi, Ung-Jae;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.1-5
    • /
    • 2016
  • A bicycle is one of the most popular sporting goods in view of a sport activity and a human health. Metallic materials such as steel, aluminum, etc. were mainly used to the bicycle fork in the past. Nowadays, the carbon fiber reinforced composite materials are widely used to the manufacturing of a bicycle fork to reduce the weight and to increase the efficiency. Safety is a most important design parameter of a bicycle fork even if the weight and cost reduction are important. Bicycle failure may happen at the critical spot of a bicycle fork and cause the accident. In this paper, the composite bicycle fork will be analyzed to secure the safety and detect a critical spot by using the finite element method with Tsai-Wu failure criterion. The stress data were obtained for the laminated composites with various number of plies and fiber orientation under the bending load. Thus, design concept of a bicycle fork was proposed to secure the safety of a bicycle. The finite element analysis results show that the connection area between a steer tube and a fork blade is critical spot, and 75 or more layers of 0 degree are needed to secure the safety of a bicycle fork.

Study and analysis of a tapered shaft in composite materials with variable speed of rotation

  • Rachid Zahi;Abderahmane Sahli;DjafarAit Kaci;Fouad Bourada;Abdelouahed Tounsi;Mofareh Hassan Ghazwani
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.191-200
    • /
    • 2023
  • This paper presents a mechanical model of a "tapered composite shaft" rotating at a constant speed around its axis. The spatial equations of motion are solved using the Lagrange technique, and a finite element approach is employed to construct the model. Theoretical analysis is used to compute the kinetic and strain energies. A comparison is made between conventional finite element methods and hierarchical finite element methods, indicating that the former uses fewer elements and provides higher accuracy in determining natural frequencies. Numerical calculations are performed to determine the eigen frequencies and critical speeds of the rotating composite shaft. The critical speeds of composite shaft systems are compared with existing literature to validate the proposed model.

Study on Design of Digital filter by 2's Complement Representation using Bidirectional algorithm (양방향 알고리즘을 이용한 2의 보수 표현 기법에 의한 디지털 필터의 설계에 관한 연구)

  • LEE, Youngseock
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The digital filter is essential element in digital signal processing area. It needs a high computational burden caused by multiplying and adding. The multiplier in digital filter is a dominant element, which occupies an wide area at the field of VLSI design, needs high power-consuming and also decides critical path that affects to filter performance. In this paper we proposed the simultaneous transform method which is represented 2's complementary representation to CSD and MSD representation to solve a complexity problem and to improve a computational speed. The performance of proposed method was implemented in VHDL and applied to an digital filters, was evaluated the decreasing of critical path delay.

  • PDF

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

Influence of Thermal Expansion on Eccentricity and Critical Speed in Dry Submersible Induction Motors

  • Lv, Qiang;Bao, Xiaohua;He, Yigang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-113
    • /
    • 2014
  • Rotor eccentricity is one of the major factors that directly influence the security of horizontal electrical machines, and the critical speed of the shaft has a close relationship with vibration. This paper deals with the influence of thermal expansion on the rotor eccentricity and critical speed in large dry submersible motors. The dynamic eccentricity (where the rotor is still turning around the stator bore centre but not its own centre) and critical speed of a three-phase squirrel-cage submersible induction motor are calculated via hybrid analytical/finite element method. Then the influence of thermal expansion is investigated by simulation. It is predicted from the study that the thermal expansion of the rotor and stator gives rise to a significant air-gap length decrement and an inconspicuous slower critical speed. The results show that the thermal expansion should be considered as an impact factor when designing the air gap length.

Rigid-Viscoplastic Finite Element Analysis of Piercing Process in Automatic Simulation of Multi-Stage Forging Processes (다단 단조공정의 자동 시뮬레이션 중 피어싱 공정의 강점소성 유한요소해석)

  • 이석원;최대영;전만수
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • In this paper, an application-oriented approach to piercing analysis in automatic forging simulation by the rigid-viscoplastic finite element mehtod is presented. In the presented approach, the accumulated damage is traced and the piercing instant is determined when the accumulated damage reaches the critical damage value. A method of obtaining the critical damage value by comparing the tensile test result with the analysis one is given. The presented approach is verified by experiments and applied to automatic simulation of a sequence of 6-stage forging processes.

  • PDF

An Experimental Study on Fatigue Life of Brace Mounting Joint (브레이스 마운팅 결합부의 피로 수명에 관한 실험적 연구)

  • 김동우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.104-109
    • /
    • 1998
  • This document is a experimental study on fatigue life of brace mounting weld joint. A brace is used to put sub-frame together on the main frame with high strength bolts. It has low fatigue life so a patch is in need for improving a fatigue characteristics of welded joint in brace mounting This paper presents the most pertinent patch size for truck. For this, a critical stress is computed at the point of fatigue crack occurred on truck frame by finite Element Analysis. Using by this critical stress. Designers are able to determin whether fatigue crack is occurred and are able to select a pertinent patch type. And then, with a selected patch type, structural joint stiffness was estimated to compare to the conventional and other patch type or brace mounting Finally, fatigue test were performed to prove a suitability of selected prototype compare with the conventional and other patch type or brace mounting.

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.