• Title/Summary/Keyword: Critical Structure

Search Result 2,354, Processing Time 0.032 seconds

Buckling Behavior of a Square Tube Structure by Lateral Impact Load (사각 관 구조물의 충격에 의한 좌굴특성)

  • Yoon, K.H.;Song, K.N.;Kang, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.812-818
    • /
    • 2001
  • The drop type impact test and finite element analysis are established for examining the buckling behavior of a square tube under the lateral impact load. Based on these results, the effects by the boundary conditions for supporting the structure are reviewed, which are as follows. One is pinned condition by screw; the other is fixed by welding. The critical impact force and acceleration by test are nearly same between two cases. However, the critical impact velocity of the pinned condition is higher than that of the fixed case. Therefore, the dynamic buckling behavior of a pinned structure is better than the fixed condition in view of critical impact velocity. These test and analysis results will be adaptable for predicting the dynamic structural integrity of a tube structure not only the axial impact event but the lateral impact event.

  • PDF

Spatial flow structure around a smooth circular cylinder in the critical Reynolds number regime under cross-flow condition

  • Raeesi, Arash;Cheng, Shaohong;Ting, David S.K.
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.221-240
    • /
    • 2008
  • The spanwise flow structure around a rigid smooth circular cylinder model in cross-flow has been investigated based on the experimental data obtained from a series of wind tunnel tests. Surface pressures were collected at five spanwise locations along the cylinder over a Reynolds number range of $1.14{\times}15^5$ to $5.85{\times}10^5$, which covered sub-critical, single-bubble and two-bubble regimes in the critical range. Separation angles were deduced from curve fitted to the surface pressure data. In addition, spanwise correlations and power spectra analyses were employed to study the spatial structure of flow. Results at different spanwise locations show that the transition into single-bubble and two-bubble regimes could occur at marginally different Reynolds numbers which expresses the presence of overlap regions in between the single-bubble regime and its former and later regimes. This indicates the existence of three-dimensional flow around the circular cylinder in cross-flow, which is also supported by the observed cell-like surface pressure patterns. Relatively strong spanwise correlation of the flow characteristics is observed before each transition within the critical regime, or formation of first and second separation-bubbles. It is also noted that these organized flow structures might lead to greater overall aerodynamic forces on a circular cylinder in cross-flow within the critical Reynolds number regime.

Critical Control Systems Design via LTR Technique

  • Ishihara, Tadashi;Imai, Minoru;Ono, Takahiko;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.19-24
    • /
    • 2003
  • A new method for designing critical control systems is proposed in this paper. The controller structure is chosen as a Davison type integral controller with an observer. The proposed method consists of two steps. First, the state feedback critical control system is designed using a quadratic performance index with tunable parameters. Second, the observer gain matrix is determined by the formal LTR procedure using a Riccati equation. Consequently, the search space can be reduced considerably compared with the conventional approach. Although the proposed method sacrifices a large freedom for the choice of controller structure provided by the principle of matching, the controller structure used in this paper is not excessively complex and can be used for most applications. An illustrative design example is presented.

  • PDF

The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.

Ubiquitous Crisis and Renormalization Approach for e-commerce : Critical Phenomena and Emergence of Phase Transition ; Logarithmic convergence

  • Ito, Ken;Kazuomi;Fukuta, Takanari
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.89-97
    • /
    • 2004
  • 1. Introduction; Fundamental Difference between conventional old commerce and e-commerce? 2. "Quantity changes into Quality"; Phase transition and Critical phenomena Logarithmic Convergence and Emergence of Quality 3. Networked Small World; Indications from Genomics; Power-Law Ordered Plain Structure of Super-Complex System ⇔ The Structure of e-Biz. 4. Uniquitous Crisis to Ubiquitous Critical Points for the Emergence of Qualified Business with e-strucrure

  • PDF

Time-dependent analysis of slender, tapered reinforced concrete columns

  • de Macedo Wahrhaftig, Alexandre
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.229-247
    • /
    • 2020
  • This study analyzed stresses in concrete and its reinforcement, computing the additional loading transferred by concrete creep. The loading varied from zero, structure exclusively under its self-weight, up to the critical buckling load. The studied structure was a real, tapered, reinforced concrete pole. As concrete is a composite material, homogenizing techniques were used in the calculations. Due to the static indetermination for determining the normal forces acting on concrete and reinforcement, equations that considered the balance of forces and compatibility of displacement on cross-sections were employed. In the mathematical solution used to define the critical buckling load, all the elements of the structural dynamics present in the system were considered, including the column self-weight. The structural imperfections were linearized using the geometric stiffness, the proprieties of the concrete were considered according to the guidelines of the American Concrete Institute (ACI 209R), and the ground was modeled as a set of distributed springs along the foundation length. Critical buckling loads were computed at different time intervals after the structure was loaded. Finite element method results were also obtained for comparison. For an interval of 5000 days, the modulus of elasticity and critical buckling load reduced by 36% and 27%, respectively, compared to an interval of zero days. During this time interval, stress on the reinforcement steel reached within 5% of the steel yield strength. The computed strains in that interval stayed below the normative limit.

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

Pressure-Temperature Diagram of Critical Condition for Disproportionation of Nd-Fe-B Alloy in Hydrogen

  • Kwon, H.W.;Kim, D.H.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.155-158
    • /
    • 2010
  • The HDDR (hydrogenation, disproportionation, desorption, and recombination) process can be used as an effective way of converting a no coercivity Nd-Fe-B ingot material, with a coarse $Nd_2Fe_{14}B$ grain structure, to a highly coercive one with a fine grain structure. Careful control of the HDDR process can lead to an anisotropic powder with good $Nd_2Fe_{14}B$ grain texture; the most critical step for inducing texture is disproportionation. The critical conditions (hydrogen pressure and temperature) for the disproportionation reaction of fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ (x = 0 or 0.3, y = 0 or 0.2) alloys, in different atmospheres of pure hydrogen and a mixed gas of hydrogen and argon, was investigated with TPA (thermopiezic analyser). From this, the hydrogen pressure-temperature diagram showing the critical conditions was established. The critical disproportionation temperature of the fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ alloys was slightly increased as the hydrogen pressure decreased in both pure hydrogen and mixed gas. The critical disproportionation temperature of the hydrogenated alloys was higher in the mixed gas than in pure hydrogen. Addition of Ga and Nb increased the critical disproportionation temperature of the fully hydrogenated Nd-Fe-B alloys.

The study of bending and buckling behavior of sandwich structure according to design parameter variation (설계변수 변화에 따른 샌드위치 구조물의 굽힘 및 좌굴 거동에 관한 연구)

  • 한근조;안성찬;안성찬;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.841-844
    • /
    • 1997
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the buckling and bending behavior with respect to the variation of design parameters such as length, height, and thickness of honeycomb sandwich core. We found that as the density and the thickness of core become higher, the value of critical bucking load increased significantly. We found that the effect of bending stress due to critical buckling load resulted in high bending stress and the value of bending stress decreased in half according to the increase of length of core. The effect by bending stress is dominant above the portion of the intersection line between bending stress and the effect of buckling is dominant below the potion of it. We could get proper thickness ratio and density of core according to applied load conditions.

  • PDF