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1. INTRODUCTION 
 

A control problem is called critical if the controlled 
variables are required to be less than prescribed values for all 
time. As a systematic method for designing critical control 
systems, Zakian [13, 14] has proposed the principle of 
matching which requires modeling of exogenous inputs. For 
several classes of exogenous inputs, the matching conditions 
which ensure that a control system satisfies a critical condition 
have been derived. The conditions are expressed in terms of 
inequality conditions on the norm of closed loop responses. 
The design of a critical control system is reduced to find a 
controller satisfying the matching condition: First, the 
designer chooses an appropriate controller structure with 
tuning parameters. Then parameters satisfying the matching 
conditions are found by a numerical search algorithm such as 
the moving boundary process [6, 11], the genetic algorithm [4] 
and the simulated annealing [10].  

Although a large freedom exists in the choice of controller 
structure, it is not clear a priori whether controller parameters 
satisfying the matching conditions exist for a given controller 
structure. In addition, the search often requires much time to 
find controller parameters satisfying the matching conditions 
because the convexity of the objective functions can not be 
guaranteed. Although an application of LMI to a class of 
critical control problems has recently been reported [8], it 
seems difficult to deal with more general class of the 
problems.  

To alleviate the above difficulties of the conventional 
approach, a new systematic design method is proposed in this 
paper. Since the principle of matching [14] suggests that a 
controller with integral action is preferable for most 
applications, the Davison type integral controller [2] with the 
observer is adopted as a basic controller structure. The 
controller parameters are determined by the classical LQ 
method with the loop transfer recovery (LTR) technique [1, 7]. 
First, the state feedback controller is determined to satisfy the 
matching conditions using a weighting matrix of the quadratic 
performance index as tuning parameters. The observer gain 
matrix is determined by the formal LTR procedure recovering 
the closed loop properties of the state feedback design in the 
output feedback with the observer. In the proposed method, 
the parameter search required in each design step is simpler 
than that required in the conventional design. 

This paper is organized as follows: In Section 2, the 
problem is formulated. The proposed design method is 
described in detail in Section 3. A design example is presented 
in Section 4. Concluding remarks are given in Section 5. 

2. PROBLEM FORMULATION 
 
2.1 Davison type integral controller 

Consider a plant described by 

[ ]( ) ( ) ( ) ( ) ,
( ) ( ),

x t Ax t B u t d t
y t Cx t

= + +

=
  (1) 

where ( ) nx t R∈ is a state vector, ( ) mu t R∈ is a control input, 
( ) my t R∈ is an output vector and ( ) md t R∈ is a disturbance 

vector. It is assumed that the matrix pair (A,B) is controllable 
and that (C, A) is observable. In addition, the transfer function 
matrix 1( ) ( )G s C sI A B−−  is minimum phase. 

To construct the Davison type integral controller [2] shown 
in Fig. 1 for the plant given (1), m integrators are augmented 
to the plant output. Then the extended system is described by 

[ ]( ) ( ) ( ) ( ) ,
( ) ( ),
t t u t d t
t H t

ξ Φξ Γ

η ξ

= + +

=
  (2) 

where ( ) mt Rη ∈  is a state vector (the output) of the 
integrators, and  
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 (3) 

 Define the quadratic performance index as 

[ ]
0

( ) ( ) ( ) ( )J t Q t u t Ru t dtη η
∞

′ ′+∫ . (4) 

The optimal state feedback regulator minimizing (4) is given 
by 

( ) ( )u t F tξ= − ,  (5) 

where F is the optimal feedback gain matrix given by  
1 ,F R Γ Π− ′   (6) 

with Π being a positive definite solution of the Riccati 
equation 

1 0R H QHΦΠ ΠΦ ΠΓ Γ Π−′ ′ ′+ − + = . (7) 

 The Davison type integral controller is obtained from the 
optimal regulator (5) for the extended system (3) by using a 
simple trick: The state vector ( )x t  in ( )tξ  is replaced by 
the estimate ˆ( )x t generated by the observer and the reference  
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Fig. 1 Structure of Davison type integral controller. 

 
input is inserted to the output side of the plant. Then the 
controller dynamics can be expressed as  

[ ]
[ ]

0
ˆ( ) ( ) ( ) ( ) ,

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ,

t

x yu t F x t F r y d

x t Ax t Bu t K y t Cx t

σ σ σ= − + −

= + + −

∫  (8) 

where ( ) mr t R∈ is a reference input, K is an observer gain 
matrix and the matrices xF and yF are the partition matrices of 
F: 

x yF F F =   .  (9) 

 
2.2 Critical control problem 

A critical control problem for the plant (1) with the 
controller (8) is considered. To define the problem, it is 
necessary to model the exogenous inputs and to give the 
design specifications regarding the responses of interest. 
Although the problem can be formulated for the multivariable 
case ( 2m≥ ) without fundamental difficulty, it requires 
complicated notations. For convenience of presentation, the 
following discussions assume that 1m =  

The reference input ( )r t  and the disturbance ( )d t are 
considered as the exogenous inputs of interest. For simplicity, 
the reference input ( )r t  is assumed to be a rate limited signal 
with the known rate, i.e., 

{ }( ) : , (0) 0r F D f f D f∞ ∞
∈ ≤ = , (10) 

while the disturbance ( )d t  is assumed to be a magnitude 
limited signal with the known bound, i.e., 

{ }( ) : , (0) 0d F M f f M f∞ ∞
∈ ≤ = . (11) 

  The responses of interest are assumed to be the tracking 
error 

( ) ( ) ( )e t r t y t− ,  (12) 

and the control input ( )u t . The design specifications are 
given by 

1 1 2 2
, ,

ˆ ˆ( , ) sup , ( , ) sup ,
r d r d

F K e F K uε ε ε ε
∞ ∞
≤ ≤  (13) 

where 1ε and 2ε are admissible bounds specified by the 
designer. The inequalities in (13) should be satisfied for all 
possible exogenous inputs defined in (10) and (11). 
 It is known that the design specification (13) can be 
replaced by the practical matching conditions [13, 14] 

1 11 1
ˆ ( , ) ( , ) ( , , ) ,er edF K D g h F M g F Kε δ ε= + ≤  (14) 

2 21 1
ˆ ( , ) ( , ) ( , , ) ,ur udF K D g h F M g F Kε δ ε= + ≤  (15) 

where ( , )erg h F denotes the unit step response of the transfer 
function from r to e, ( , , )edg F Kδ  denote the unit impulse 
response of the transfer function from d to e ; the meanings of 
the notations ( , )urg h F  and ( , , )udg F Kδ  are obvious. It 
should be noted that the expressions related to the responses to 
the reference input r do not include the observer gain matrix K 
since it can easily be shown that they are really independent of 
K. 

The design of the critical control system is reduced to find 
controller parameters F and K which satisfy the set of the 
inequalities (14) and (15). It might be possible to find all the 
parameters at once by an appropriate search method such as 
the moving boundary process [6, 11]. However, this approach 
requires 2n+1 dimensional search space for which it is 
difficult to assume simple topography for the set of solutions 
for the inequalities (14) and (15).  

To alleviate the search problem in the standard design of 
critical control systems, a new design method is proposed. The 
proposed method is a two-step design procedure. The fist step 
is to find a state feedback controller satisfying the design 
specifications (14) and (15). For the state feedback design, it is 
proposed to use a weighting coefficient of the quadratic 
performance index as a tuning parameter. The second step is 
to determine the observer gain matrix K by using the well 
known asymptotic property of the optimal state estimator 
(Kalman filter) [1, 3].  

 
3. NEW DESIGN METHOD 

 
3.1 State feedback design 

For the state feedback case, the integral controller is given 
by 

( ) ( ) ( ),

( ) ( ) ( ).
x yu t F x t F t

t y t r t

η

η

= − −

= −
  (16) 

The structure of the controller is shown in Fig. 2. It follows 
from (1) and (16) that 

( ) ( ) ( ) ( ),

( ) ( ),
F r dt t r t d t

y t t

ξ Φ ξ Γ Γ

Θξ

= + +

=
 (17) 

where 
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 (18) 

 From (17), the explicit representations of the transfer 
functions related to the design specification (14) and (15) can 
easily be obtained as  

1

11 1 1

( ) 1 ( )

1 ( ) ( )( ) ,

er F r

x y y

G s sI

s G s I F s F C sI A B F

Θ Φ Γ∗ −

−− − −

= − −

 = − + + − 
 (19) 

1

11 1

( ) ( )

( ) 1 ( )( ) ,

ed F d

x y

G s sI

G s F s F C sI A B

Θ Φ Γ∗ −

−− −

= − −

 = − + + − 
 (20) 

1

11 1 1

( ) ( )

1 ( )( ) ,

ur F r

x y y

G s F sI

s F s F C sI A B F

Φ Γ∗ −

−− − −

= − −

 = + + − 
 (21) 
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Fig. 2 Structure of the state feedback controller. 
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1 1

( ) ( )

1 ( )( )

( )( ) ,

ud F d

x y

x y

G s F sI

F s F C sI A B

F s F C sI A B

Φ Γ∗ −

−− −

− −

= − −

 = − + + − 
+ −

 (22) 

where the meaning of the suffixes are obvious and the 
asterisks are used to indicate that they are transfer functions 
related to the state feedback design. Note that )G s(  in (19) 
and (20) is the plant transfer function 1( ) ( )G s C sI A B−= − .  
 For the transfer functions (19)-(22), the following result is 
essential for the state feedback design of the critical control 
system. 

Property 1: Consider the four transfer functions defined in 
(19)-(22). The transfer functions ( )erG s∗ and ( )edG s∗ have a 
zero at 0s = . The transfer function ( )urG s∗ has a zero at 

0s =  if the plant transfer function 1( ) ( )G s C sI A B−= − has a 
pole at 0s = . The transfer function ( )udG s∗ has no zero at 

0s = .    
Proof: Omitted.                                    

 Choose Q q= and 1R =  in the quadratic performance 
index (4). A state feedback matrix F satisfying the state 
feedback versions of the practical matching conditions (14) 
and (15) are found by a numerical search using the weight q as 
a tuning parameter. This can reduce the number of tuning 
parameters compared with the direct search of the feedback 
gain matrix F. Another important advantage is that the 
stability and sufficient stability margins are always guaranteed 
for any choice of 0q > .  
  The state feedback version of the practical matching 
conditions (14) and (15) can be written as 

1 11 1
ˆ ( ) ( , ) ( , )er edq D g h q M g qε δ ε∗ ∗ ∗= + ≤ , (23) 

2 21 1
ˆ ( ) ( , ) ( , )ur udq D g h q M g qε δ ε∗ ∗ ∗= + ≤ , (24) 

where the tuning parameter q is explicitly included to 
emphasize the dependence. 

3.2 Asymptotic properties of state feedback responses 
  It is useful to clarify the asymptotic behavior of the 
responses of interest when the tuning parameter q tends to 
infinity. From the well-know result for the standard optimal 
regulators, [1, 3] the asymptotic behavior of the optimal 
feedback gain matrix F can easily be identified as follows. 

Property 2: Consider the quadratic performance index (4) 
with Q q= and 1R = . Denote the corresponding optimal 
feedback gain matrix as 

( ) ( ) ( )x yF q F q F q =     (25) 

to emphasize the dependence on q. Then the sub-matrices 

have the asymptotic properties 
1/ 2 1/ 2lim ( ) 0, lim ( ) .x yq q

q F q q F q I− −

→∞ →∞
= =  (26) 

Proof: Omitted.                                     

 The asymptotic behavior of the transfer functions related to 
the responses of interest can be obtained by applying the 
above results.   

Property 3: Consider the transfer functions defined in 
(19)-(22) with the additional inclusion of the tuning parameter 
q to denote the dependence. These transfer functions have the 
following asymptotic properties: 

lim ( , ) 0erq
G s q∗

→∞
=   (27) 

lim ( , ) 0edq
G s q∗

→∞
=   (28) 

1lim ( , ) ( )urq
G s q G s∗ −

→∞
=   (29) 

lim ( , ) 1udq
G s q∗

→∞
= −   (30) 

Proof: The results follow by using the asymptotic properties 
(26) in the expressions (19)-(22).                      

  From the above results, it turns out that the 1L norms of the 
time responses in the practical matching conditions (23) and 
(24) have the following asymptotic properties: 

1
lim ( , ) 0erq

g h q∗

→∞
=   (31) 

1
lim ( , ) 0edq

g qδ∗

→∞
=   (32) 

1
lim ( , )urq

g h q∗

→∞
= ∞   (33) 

1
lim ( , )udq

g qδ∗

→∞
= ∞   (34) 

These results readily provide the following result. 

Property 4: The left sides of the practical matching conditions 
(23) and (24) satisfy the asymptotic properties 

1 2ˆ ˆlim ( ) 0, lim ( )
q q

q qε ε∗ ∗

→∞ →∞
= = ∞ ,  (35) 

respectively.   

  The above property implies that there is a fundamental 
limitation on the choice of the admissible bounds 1ε and 2ε .  
3.3 Computation of 1L norms  

  Unlike 2H and H∞ norms, a simple method for computing 
1L norms has not been discovered. Rutland and Lane [5] has 

proposed a method for computing 1L norms of the impulse 
response using a state space description. Their method seems 
to be best currently available.  
 The expressions in (20) and (22) suggest that the 1L norms 
of the impulse responses ( , )edg qδ∗ and ( , )udg qδ∗  in the 
practical matching conditions (23) and (24) can be computed 
by the method of Rutland and Lane using the state space 
representations ( , , )F dΦ Γ Θ− and ( , , )F d FΦ Γ − , respectively. 
  To compute the 1L norms of the step responses 

( , )erg h q∗  and ( , )urg h q∗ required in (23) and (24), the state 
space representations given by (19) and (21) can not directly 
be used with the method of Rutland and Lane. The following 
results provide simple modifications to overcome this 
difficulty.  

r  y

A

CB

xF  

yF∫
u  

x  

- -

d  Plant 

∫
e  



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea      
 

Property 5: The step response ( , )erg h q∗ can be computed as 
the impulse response of the realization ( , , )F erΦ Γ Θ  where 

erΓ  is a vector satisfying the relation 

0
1 1

F r erΦ Γ Γ
Θ

   
=   −   

.  (36) 

In addition, if the plant transfer function 1( ) ( )G s C sI A B−= −  
has a pole at 0s = , the step response ( , )urg h q∗ can be 
computed as the impulse response of the realization 
( , , )F urΦ Γ Θ  where urΓ  is a vector satisfying the relation 

0
0 1

F r ur

F
Φ Γ Γ   

=   −   
.  (37) 

Proof: As shown in Property 1 the transfer function ( )erG s∗  
defined in (19) has a zero at 0s = . Then, by the definition of 
the zero [1], there exists a non-zero vector erΓ  satisfying the 
relation (36) which can be rewritten as  

0,
1.

F er r

er

Φ Γ Γ
ΘΓ

+ =

=
  (38) 

It follows from (19) and (38) that 

1

1

1

( ) 1 ( )

( )

( ) .

er F r

F F er

F er

G s sI

I sI

s sI

Θ Φ Γ

Θ Φ Φ Γ

Θ Φ Γ

∗ −

−

−

= − −

 = + − 
= −

 (39) 

Consequently, the step response ( , )erg h q∗ can be obtained as 
the impulse response of 1( )F ersIΘ Φ Γ−− . The result for the 
step response ( , )urg h q∗ can be proved in a similar way.     

  The above results make it possible to compute the step 
responses by the method for computing 1L norm of the 
impulse responses proposed by Rutland and Lane [5]. 
3.4 Application of LTR procedure 
 Once the parameter q satisfying the practical matching 
conditions (23) and (24) for the state feedback design is found, 
the next step is to determine the observer gain matrix K which 
satisfies the practical matching conditions (14) and (15) for the 
output feedback case. The well known LTR procedure using 
the asymptotic property of the Kalman filter [1, 3, 7] is used 
for this purpose. 
  Consider the Kalman filter as an observer for the plant (1). 
For a disturbance covariance matrix W and an observation 
noise covariance matrix V, the Kalman filter gain matrix is 
given by 

1
fK P C V −′ ,  (40) 

where fP  is a non-negative definite solution of the Riccati 
equation 

1 0f f f fAP P A P C V CP W−′ ′+ − + = . (41) 

The special choice of the covariance matrices 

,V I W BBσ ′= =   (42) 

where σ  is a positive scalar parameter, is usually used. Let 
( )K σ denote the optimal filter gain matrix (40) corresponding 

to the covariance matrices (42). It is well-known that, for 
sufficiently largeσ , ( )K σ can be expressed simply as 

1/ 2( )K Bσ σ≈ .  (43) 

  The parameter σ  is chosen as the tuning parameter to 
determine the observer gain matrix K which is used in the  

 
Fig. 3 Test disturbance signal 

 

output feedback controller. Rewrite the practical matching 
conditions (14) and (15) for the output case as

 
1 111

ˆ ( , ) ( , ) ( , , ) ,er edq D g h q M g qε σ δ σ ε∗= + ≤  (44) 

2 211
ˆ ( , ) ( , ) ( , , ) .ur udq D g h q M g qε σ δ σ ε∗= + ≤  (45) 

Note that that the responses related to the reference 
input ( )r t  are independent of the parameter σ  and 
already fixed by q found in the state feedback design 
step.  
  The asymptotic behavior of the responses related to 
the disturbance ( )d t is given as follows. 
Property 6: Assume that the observer gain matrix K is 
determined as the Kalman filter gain matrix for the covariance 
matrices (42). Let ( , )edG s σ  and ( , )udG s σ denote the 
transfer function from the disturbance to the tracking error and 
that to the control input, respectively. Then, the transfer 
function matrices satisfy 

lim ( , ) ( ), lim ( , ) ( ),ed ed ud udG s G s G s G s
σ σ

σ σ∗ ∗

→∞ →∞
= =  (46) 

where ( )edG s∗ and ( )udG s∗ are defined in (20) and (22), 
respectively. 
Proof: It can easily be shown that  

( ){
( ) }

1

11 1

( , ) ( ) [ ( ) ]

[ ( ) ] ( ) ( ) ,

ed x

x y

G s G s I I F sI A K C B

F sI A K C K s F G s

σ σ

σ σ

−

−
− −

= − + + − +

− + +
 (47) 

( ){
( ) }
( )
( )

11

11 1

11

1 1

( , ) [ ( ) ]

[ ( ) ] ( ) ( )

[ ( ) ]

[ ( ) ] ( ) ( ).

ud x

x y

x

x y

G s I I F sI A K C B

F sI A K C K s F G s

I F sI A K C B

F sI A K C K s F G s

σ σ

σ σ

σ

σ σ

−
−

−
− −

−−

− −

= − + + − +

− + +

+ − +

− + +

 (48) 

Note that the following asymptotic properties can be obtained 
from (43):  

[ ] 1

11 1/ 2 1

( )

( ) ( )

0 ( )

sI A K C B

sI A B I C sI A B

σ

σ

σ

−

−− −

− +

 = − + − 
→ →∞

 (49) 
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(a) Tracking error 

 

 
(b) Control input 

 
Fig. 4 Responses of the state feedback case 

 
 

[ ] 1

11/ 2 1 1/ 2 1

1 1

( ) ( )

( ) ( )

( ) ( ) ( )

sI A K C K

sI A B I C sI A B

sI A BG s

σ σ

σ σ

σ

−

−− −

− −

− +

 = − + − 
→ − →∞

 (50) 

It can easily be checked that the asymptotic relations in (46) 
hold by substituting the expression (49) and (50) in (47) and 
(48).                    

  The above property suggests that, for sufficiently large σ , 
the practical matching conditions (44) and (45) for the output 
feedback controller are satisfied provided the parameter q is 
chosen such that the conditions (23) and (24) for the state 
feedback case are satisfied. 
 

4. DESIGN EXAMPLE 
 
  A simple design example is presented to illustrate the 
effectiveness of the proposed design method. An earth 
scanning satellite antenna control problem discussed by 
Whidborne and Liu [9] is considered. The plant transfer 
function is given by 

 

 
(a) Tracking error 

 

 
(b) Control input 

 
Fig. 5 Responses of the output feedback case 

 

2

27697( )
( 1429 42653)

G s
s s s

=
+ +

.  (51) 

Note that the transfer function has a pole at 0s = . The 
reference input ( )r t  and the disturbance ( )d t are assumed 
to belong to the class ( )F D∞  with 1D =  and ( )F M∞ with 

0.5M = , respectively. The design specifications are given by 

1 1ˆ ( , ) 0.020944 [rad],qε σ ε≤ =  (52) 

2 2ˆ ( , ) 19.5 [V].qε σ ε≤ =   (53) 

The first condition corresponds to the tracking error bound 
1.2± degree which turns out to be more stringent than the 

second requirement.  
  First, the determination of the weighting parameter q for the 
quadratic performance index satisfying the practical matching 
conditions (23) and (24) for the state feedback design is 
considered. It is confirmed numerically that the index 

1̂ ( )qε ∗ is a monotonously decreasing function of q while 
2ˆ ( )qε ∗ is monotonously increasing. In addition, it is found that 

the specification on 2ˆ ( )qε ∗ is satisfied for the wide range of q 
satisfying the specification on 1̂ ( )qε ∗ . Therefore it is possible 
to determine q satisfying the both specifications by a one 
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dimensional search on the first index 2ˆ ( )qε ∗ .  It is found by 
the bisection search that q satisfying 1 1ˆ ( )qε ε∗ =  is given by 

97.4985 10q = × and then the second design specification is 
satisfied with 2ˆ ( ) 6.369qε ∗ = .  
  The sinusoidal signal ( ) 0.5sin 2r t t= is taken as a test 
reference input signal belonging to the class ( )F D∞  with 

1D = . A random signal shown in Fig. 3 is generated as a test 
disturbance signal belonging to the ( )F M∞ with 0.5M = .  
  The responses to the test input signals for the state feedback 
design are shown in Fig. 4. It is seen that the two design 
specifications are satisfies. Figure 5 shows the responses of 
the output feedback control system to the test input. Note that 
the design specification on 1̂( , )qε ρ can not be satisfied for 
relatively small σ  but it can be satisfied by sufficiently large 
σ .   
 

5. CONCLUSION 
 
 The new method for the design of critical control systems 
has been proposed. The proposed method utilizes the fruits of 
LQG/LTR technique to decompose the original design 
problem in the two steps. The parameter search required in 
each design step is much simpler than that required by the 
conventional approach. In addition, the tuning parameters 
have clear system-theoretic meaning, which provides the 
designer clear perspective.  
 The proposed method assumes the use of the Davison type 
integral controller as a basic controller. Although a large 
freedom for the choice of controller structure provided by the 
principle of matching is sacrificed, the controller structure 
used in this paper is not excessively complex and can be used 
for most applications.  
 Extensions of the proposed method to non-minimum phase 
plants are possible and will be reported elsewhere.  
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