• 제목/요약/키워드: Critical State Theory

검색결과 128건 처리시간 0.022초

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain elasticity theory with porous core and functionally graded facesheets

  • Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the important novelty and the defining a physical phenomenon of the resent research is the development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials in the top and bottom face sheets.Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case.

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

액체구조에 관한 천이상태이론의 물에 대한 적용 (Transient State Theory of Significant Liquid Structure applied to Water)

  • 박형석;장세현
    • 대한화학회지
    • /
    • 제10권2호
    • /
    • pp.91-97
    • /
    • 1966
  • 박형석, 안운선과 장세헌이 제안한 액체구조에 관한 천이상태이론을 물에 적용시켜 액체상태에 있는 물의 상태합을 구했다. 이 이론은 액체의 분자가 고체와 같은 자유도, 천이상태의 자유도 및 기체와 같은 자유도를 갖는다는 것이다. 물은 4^{\circ}C$에서 그의 부피가 최소로 되는 등 특유한 성질들을 가졌지만 이 액체이론이 잘 적용된다. 이 이론을 써서 계산한 물의 몰부피, 증가압, 엔트로피, 증발열 및 일정한 압력에서의 비열 그리고 임계점에서의 성질 등은 실측치와의 좋은 일치를 보여준다.

  • PDF

The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method

  • Choi, Yoon-Jeong;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권11호
    • /
    • pp.1657-1660
    • /
    • 2004
  • Several critical geometries associated with the rearrangement of $CH_3SNO_2\;to\;CH_3SONO$ are calculated with the density functional theory (DFT) method and compared with those of the ab initio molecular orbital methods. There are two probable pathways for this rearrangement, one involving the transition state of an oxygen migration and the other through the homolytic decomposition to radicals. The reaction barrier via the transition state is about 60 kcal/mol and the decomposition energy into radicals about 35 kcal/mol, suggesting that the reaction pathway via the homolytic cleavage to radical species is energetically favorable. Since even the homolytic cleavage requires large energies, the rearrangement reaction is unlikely without the aid of catalysts.

Swerve, Trope, Peripety: Turning Points in Criticism and Theory

  • Tally, Robert T. Jr.
    • 영어영문학
    • /
    • 제64권1호
    • /
    • pp.25-37
    • /
    • 2018
  • The turning point is one of the more evocative concepts in the critic's arsenal, as it is equally suited to the evaluation and analysis of a given moment in one's day as to those of a historical event. But how does one recognize a turning point? As we find ourselves always "in the middest," both spatially and temporally, we inhabit sites that may be points at which many things may be seen to turn. Indeed, it is usually only possible to identify a turning point, as it were, from a distance, from the remove of space and time which allows for a sense of recognition, based in part on original context and in part of perceived effects. In this article, Robert T. Tally Jr. argues that the apprehension and interpretation of a turning point involves a fundamentally critical activity. Examining three models by which to understand the concept of the turning point-the swerve, the trope, and peripety (or the dialectical reversal)-Tally demonstrates how each represents a different way of seeing the turning point and its effects. Thus, the swerve is associated with a point of departure for a critical project; the trope is connected to continuous and sustained critical activity in the moment, and peripety enables a retrospective vision that, in turn, inform future research. Tally argues for the significance of the turning point in literary and cultural theory, and concludes that the identification, analysis, and interpretation of turning points is crucial to the project of criticism today.

Determination of the Kinetic Energy Release Originating from the Reverse Critical Energy in Unimolecular ion Dissociation

  • Yeh, In-Chul;Lee, Tae-Geol;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권3호
    • /
    • pp.241-245
    • /
    • 1994
  • A method has been developed to estimate the kinetic energy release originating from the reverse critical energy in unimolecular ion dissociation. Contribution from the excess energy was estimated by RRKM theory, the statistical adiabatic model and the modified phase space calculation. This was subtracted from the experimental kinetic energy release distribution (KERD) via deconvolution. The present method has been applied to the KERDs in $H_2$, loss from $C_6H_6^+$ and HF loss from ${CH_2CF_2}^+$. In the present formalism, not only the energy in the reaction coordinate but also the energy in some transitional vibrational degrees of freedom at the transition state is thought to contribute to the experimental kinetic energy release. Details of the methods for treating the transitional modes are found not to be critical to the final outcome. For a reaction with small excess energy and large reverse critical energy. KERD is shown to be mainly governed by the reverse critical energy.

ReliabIlity analysis of containment building subjected to earthquake load using response surface method

  • Lee, Seong Lo
    • Computers and Concrete
    • /
    • 제3권1호
    • /
    • pp.1-15
    • /
    • 2006
  • The seismic safety of reinforced concrete containment building can be evaluated by probabilistic analysis considering randomness of earthquake, which is more rational than deterministic analysis. In the safety assessment of earthquake-resistant structures by the deterministic theory, it is not easy to consider the effects of random variables but the reliability theory and random vibration theory are useful to assess the seismic safety with considering random effects. The reliability assessment of reinforced concrete containment building subjected to earthquake load includes the structural analysis considering random variables such as load, resistance and analysis method, the definition of limit states and the reliability analysis. The reliability analysis procedure requires much time and labor and also needs to get the high confidence in results. In this study, random vibration analysis of containment building is performed with random variables as earthquake load, concrete compressive strength, modal damping ratio. The seismic responses of critical elements of structure are approximated at the most probable failure point by the response surface method. The response surface method helps to figure out the quantitative characteristics of structural response variability. And the limit state is defined as the failure surface of concrete under multi-axial stress, finally the limit state probability of failure can be obtained simply by first-order second moment method. The reliability analysis for the multiaxial strength limit state and the uniaxial strength limit state is performed and the results are compared with each other. This study concludes that the multiaxial failure criterion is a likely limit state to predict concrete failure strength under combined state of stresses and the reliability analysis results are compatible with the fact that the maximum compressive strength of concrete under biaxial compression state increases.

Experimental axial force identification based on modified Timoshenko beam theory

  • Li, Dong-sheng;Yuan, Yong-qiang;Li, Kun-peng;Li, Hong-nan
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.153-173
    • /
    • 2017
  • An improved method is presented to estimate the axial force of a bar member with vibrational measurements based on modified Timoshenko beam theory. Bending stiffness effects, rotational inertia, shear deformation, rotational inertia caused by shear deformation are all taken into account. Axial forces are estimated with certain natural frequency and corresponding mode shape, which are acquired from dynamic tests with five accelerometers. In the paper, modified Timoshenko beam theory is first presented with the inclusion of axial force and rotational inertia effects. Consistent mass and stiffness matrices for the modified Timoshenko beam theory are derived and then used in finite element simulations to investigate force identification accuracy under different boundary conditions and the influence of critical axial force ratio. The deformation coefficient which accounts for rotational inertia effects of the shearing deformation is discussed, and the relationship between the changing wave speed and the frequency is comprehensively examined to improve accuracy of the deformation coefficient. Finally, dynamic tests are conducted in our laboratory to identify progressive axial forces of a steel plate and a truss structure respectively. And the axial forces identified by the proposed method are in good agreement with the forces measured by FBG sensors and strain gauges. A significant advantage of this axial force identification method is that no assumption on boundary conditions is needed and excellent force identification accuracy can be achieved.

3차 상태방정식과 여러 혼합법칙 및 Kirkwood-Buff용액이론을 이용한 초임계유체내에서의 용질의 무한희석 부분몰부피의 계산 (Prediction of partial molar volumes of solutes in supercritical CO2 using the Peng-Robinson equation of state with various mixing rules and Kirkwood-Buff solution theory)

  • 전영표;박종선;권영중
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.253-260
    • /
    • 1999
  • Two thermodynamic models were used to predict the partial molar volumes of solutes in supercritical carbon dioxide at infinite dilution: (1) the Peng-Robinson equation of state with various mixing rules including those based on $EOS/G^E$ (2) the Kirkwood Buff fluctuation integral with the hard sphere expansion (HSE) method. The Kirkwood-Buff fluctuation integral method, in which an equation of state for pure component and molecular parameters are required, produced better results especially near the critical point than the Peng-Robinson equation of state with the several mixing rules based an $EOS/G^E$. When the $EOS/G^E$ mixing rules were used, poorer results were obtained compared with the classical mixing rule and Kirkwood-Buff model.

  • PDF

결정적 학습 경로를 위한 지식 구조 분석 시스템 (Knowledge Structure Analysis System for Critical Learning Pathway)

  • 이상훈;문승진
    • 인터넷정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.39-46
    • /
    • 2015
  • 지식 공간 이론이란 학습자들이 대해 최대한의 학습 성취를 이끌어 낼 수 있도록 학습자들에 대한 가이드라인을 제공해주는 이론으로 여러 교육 환경에서 사용되어 왔다. 하지만 지식 공간 이론을 사용해왔던 많은 방법들이 주로 수작업을 통해 이루어져 왔고 이러한 작업을 지원하기 위해서 비주얼 베이직 혹은 R 등의 프로그램이 사용되어 왔지만 프로그램을 따로 배워야 하는 불편함과 시간적으로 낭비되는 등의 문제를 야기해 왔다. 본 논문에서는 이러한 문제를 해결하기 위해서 지식 공간상에서 학습자들의 지식구조를 자동으로 분석하고 결정적 학습 경로를 제공하는 이른바 지식 구조 분석 시스템을 제안한다. 제안된 시스템은 아파치 웹상에서 구현되었고, 카이 제곱 값을 산출하여 결정적 학습 흐름도를 도출하도록 하였다. 제안된 방법은 사용자들이 웹에서 편리하게 학습자들의 지식 상태 분석할 수 있도록 환경을 제공하고 지식 구조의 체계적인 검토를 위한 방법을 제시해준다.