• Title/Summary/Keyword: Critical Spectrum

Search Result 249, Processing Time 0.023 seconds

Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes

  • Jeong, Byoung-Seong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.214-218
    • /
    • 2021
  • We investigated the optimal stacked structure from the perspective of process architecture (PA) through emission spectrum analysis according to the wavelength of quantum dot (QD)-organic light-emitting diodes (OLED). We confirmed that the blue-light leakage through the QD can be minimized by increasing the QD filling density above a critical value in the red QD (R-QD) layer. In addition, when the thickness of red-color filter (R-CF) at the upper part of the R-QD increased to more than 3 ㎛, the leakage of blue light through the R-CF was effectively blocked, and a very sharp emission spectrum in the red wavelength band could be obtained. According to these outstanding results, we expect that the development of QD-OLED displays with very excellent color gamut can be possibly realized.

Comprehensive validation of silicon cross sections

  • Czakoj, Tomas;Kostal, Michal;Simon, Jan;Soltes, Jaroslav;Marecek, Martin;Capote, Roberto
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2717-2724
    • /
    • 2020
  • Silicon, especially silicon in the form of SiO2, is a major component of rocks. Final spent fuel storages, which are being designed, are located in suitable rock formations in the Earth's crust. Reduction of the uncertainty of silicon neutron scattering and capture is needed; improved silicon evaluations have been recently produced by the ORNL/IAEA collaboration within the INDEN project. This paper deals with the nuclear data validation of that evaluation performed at the LR-0 reactor by means of critical experiments and measurement of reaction rates. Large amounts of silicon were used both as pure crystalline silicon and SiO2 sand. The critical moderator level was measured for various core configurations. Reaction rates were determined in the largest core configuration. Simulations of the experimental setup were performed using the MCNP6.2 code. The obtained results show the improvement in silicon cross-sections in the INDEN evaluations compared to existing evaluations in major libraries. The new Thermal Scattering Law for SiO2 published in ENDF/B-VIII.0 additionally reduces the discrepancy between calculation and experiments. However, an unphysical peak is visible in the neutron spectrum in SiO2 obtained by calculation with the new Thermal Scattering Law.

Game Theory based Dynamic Spectrum Allocation for Secondary Users in the Cell Edge of Cognitive Radio Networks

  • Jang, Sungjin;Kim, Jongbae;Byun, Jungwon;Shin, Yongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2231-2245
    • /
    • 2014
  • Cognitive Radio (CR) has very promising potential to improve spectrum utilization by allowing unlicensed Secondary Users (SUs) to access the spectrum dynamically without disturbing licensed Primary Users (PUs). Mitigating interference is a fundamental problem in CR scenarios. This is particularly problematic for deploying CR in cellular networks, when users are located at the cell edge, as the inter-cell interference mitigation and frequency reuse are critical requirements for both PUs and SUs. Further cellular networks require higher cell edge performance, then SUs will meet more challenges than PUs. To solve the performance decrease for SUs at the cell edge, a novel Dynamic Spectrum Allocation (DSA) scheme based on Game Theory is proposed in this paper. Full frequency reuse can be realized as well as inter-cell interference mitigated according to SUs' sensing, measurement and interaction in this scheme. A joint power/channel allocation algorithm is proposed to improve both cell-edge user experience and network performance through distributed pricing calculation and exchange based on game theory. Analytical proof is presented and simulation results show that the proposed scheme achieves high efficiency of spectrum usage and improvement of cell edge SUs' performance.

Effects of Fission Neutron Spectra in Reactor Calculations (핵분열 중성자스펙트럼이 핵계산에 미치는 영향)

  • 김정도;이종태
    • Nuclear Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.280-285
    • /
    • 1983
  • Effects of fission neutron spectra in the reactor calculations have been analysed through applications of several cases of spectra in the criticality calculations of fast critical assemblies. They were the application of Maxwellian or Watt-Cranberg type formulae, of region dependent spectrum, of composition dependent spectrum, of fission transfer matrix, and the effects due to the selection of nuclear temperature in Maxwellian formula.

  • PDF

The Hearing Ability of the Dusky spinefoot Siganus fuscescens(Houttuyn)to Audible Sound 2. The Auditory Critical Ratio (가청음에 의한 독가시치의 청각 능력 2. 청각 임계비)

  • Lee, Chang-Heon;Moon, Jong-Wook;Seo, Du-Ok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.191-198
    • /
    • 2000
  • An experiment was carried out to obtain the fundamental data on the auditory thresholds of fishes for catching method using audible frequency sound, the auditory thresholds of dusky spinefoot Siganus fuscescens(Houttuyn) were measured in the presence of masking noise in the spectrum level range of 74 - 83dB re $1{\mu}Pa/{\sqrt{Hz}}$ by heartbeat conditioning technique using pure tones coupled with a delayed electric shock. The auditory critical ratios were about 23 - 34dB at measurement frequency range. The ratio increased almost linearly with increasing frequency from 200 to 500Hz. The noise spectrum level at the start of masking was about 61 - 73dB within the measurement frequency range. This suggests that hearing of dusky spinefoot is masked in the natural environment with the noise spectrum level above 70dB. The sound pressure level of which the signal sound of 100Hz is recognized by dusky spinefoot under the white noise of 70dB is above 98dB and the critical ratio of them is above 23dB.

  • PDF

Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment for Aircraft Wing Structure (항공기 주익구조물의 피로균열 진전 해석 및 실험을 위한 응력 스펙트럼 알고리즘 개발)

  • Chun, Young Chal;Jang, Yun Jung;Chung, Tae Jin;Kang, Ki Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1281-1286
    • /
    • 2015
  • Fatigue cracks can be generated in aircraft as a result of the cumulative time spent during flight operations, which can extend for long periods of time and cover a variety of missions. If a crack occurs in an aircraft's main spar, it can generate many problems, including a lift time reduction. To solve this problem, it was necessary to perform an analysis of fatigue crack growth in the fatigue critical locations. Much time and expense is involved in generating the stress needed for a crack propagation analysis over a long period of time to obtain the amount of data required for an actual aircraft. In this paper, an algorithm is developed that can calculate the spectrum of stress over a long period of time for a mission by the Southwest Research Institute, which is based on the short-time load factor data produced using the peak-valley cycle counting method.

Damage Tolerance Assessment for Fatigue-Critical Locations of Wing Structure of Aged Aircraft (장기운영 항공기 주익 구조물 피로임계부위의 손상허용평가)

  • Chun, Young-Cheol;Kim, Won-Cheol;Jin, Ji-Won;Chung, Tae-Jin;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • This study aims to assess the damage tolerance of the wing structure of aged aircraft with long-term service through the fatigue crack growth analysis and tests. For the fatigue-critical locations (FCL) W2 and W4 in the wing structure, the fatigue stress spectrum was derived based on a previous study. Thereafter, a crack propagation analysis for the FCLs was conducted using the commercial software $NASGRO^{TM}$. The algorithm for the fatigue stress spectrum was verified. Fatigue crack growth tests were then performed for two types of specimens: Type #1 was extracted from the wing structure of aged aircraft, and Type #2 was made of the same material as the wing structure. By comparing the experimental results of these specimens, we assessed the damage tolerance of the wing structure of aged aircraft with service time.

The Auditory Critical Ratio of the Black Rock Fish Sebastes Schlegeli (조피볼락의 청각 임계비)

  • Park, Yong-Seok;Lee, Chang-Heon;Kim, Ko-Hwan;Seo, Du-Ok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • In order to obtain the fundamental data on the auditory thresholds of fishes for marine ranching, the auditory thresholds of black rock fish Sebastes Schlegeli were measured in the presence of masking noise in the spectrum level range of 73 - 83dB (0dB re $1{\mu}Pa/{\sqrt{Hz}}$) with a classical cardiac conditioning technique. Critical ratios were about 19 - 30dB at 80 - 300Hz and 46 - 54dB at 500 - 800Hz. The ratio increased almost linearly with increasing frequency to 500Hz. The noise spectrum level at the start of masking was about 70dB within the frequency range of 80 - 800Hz excepting 65dB at 300Hz. This suggests that hearing of the black rock fish is masked in the natural environment with the noise spectrum level above 65dB. The sound pressure level of which the signal sound of 100 - 200Hz is recognized by black rock fish under the ambient noise is above 90dB and the critical ratio of them is above 20dB.

  • PDF

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

Analysis on the Minimum Separation Distance for Spectrum Sharing between IMT and FSS systems in C Band (C 대역에서 IMT와 FSS 시스템간 주파수 공유를 위한 최소 이격거리 분석)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.907-915
    • /
    • 2009
  • Spectrum sharing between wireless systems becomes a critical issue due to emerging new technologies and spectrum shortage. Recently, IMT system has been allocated in the same frequency C band (3400-4200MHz) along with FSS services on co-primary basis, which means that harmful interference probability may be inspired. In this paper, to estimate the spectrum sharing between IMT and FSS systems, the minimum separation distances have been evaluated considering major factors such as the clutter loss in some areas and the elevation angle of FSS earth station, and using I/N=-10dB which is fundamental criterion for coexistence.

  • PDF