• 제목/요약/키워드: Critical Penetration Energy

검색결과 27건 처리시간 0.025초

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

Enhancement of lower critical field of MgB2 thin films through disordered MgB2 overlayer

  • Soon-Gil, Jung;Duong, Pham;Won Nam, Kang;Byung-Hyuk, Jun;Chorong, Kim;Sunmog, Yeo;Tuson, Park
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.1-5
    • /
    • 2022
  • We investigate the effect of surface disorder on the lower critical field (Hc1) of MgB2 thin films with a thickness of 850 nm, where the disorder on the surface region is produced by the irradiation of 140 keV Co ions with the dose of 1 × 1014 ions/cm2. The thickness of the damaged region by the irradiation is around 143 nm, corresponding to ~17% of the whole thickness of the film, thereby forming the disordered MgB2 overlayer on the pure MgB2 layer. The magnetic field dependence of magnetization, M(H), for the pristine MgB2 thin film and the film with overlayer is measured at various temperatures, and Hc1 is determined from the difference (△M) between the Meissner line and magnetization signal with the criterion of △M = 10-3 emu. Intriguingly, the film with the disordered overlayer shows a remarkably large Hc1(0) = 108 Oe compared to the Hc1(0) = 84 Oe of pristine film, indicating that the disordered MgB2 overlayer on the pure MgB2 layer serves to prevent the penetration of vortices into the sample. These results provide new ideas for improving the superheating field to design high-performance superconducting radio-frequency cavities.

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

단순모델에 의한 회전형 열교환기 이론해석 (Theoretical Analysis of a Rotary Heat Exchanger Based on a Simplified Model)

  • 손성균;김용찬;이대영
    • 설비공학논문집
    • /
    • 제27권8호
    • /
    • pp.409-417
    • /
    • 2015
  • A simplified rotary heat-exchanger model was developed with an assumption of a linear temperature distribution along the flow direction. Based on the model, the exact fluid solution and solid temperature variations were obtained and verified from a comparison with previous numerical studies. The heat transfer in the rotary heat exchanger was investigated using the theoretical solutions. The heat exchanger's effectiveness was shown to be saturated, with a rotational-speed increase that is higher than a critical value that is solely dependent on the thermal capacity of the solid matrix but independent of the fluid flow rate; the saturated value of the effectiveness was determined only by the NTU of the heat exchanger. Where the thermal diffusivity of the solid matrix is so slight that the thermal penetration depth becomes smaller than the matrix thickness, the effective thermal capacity of the solid matrix decreased according to the penetration depth.

Identification and SWOT analysis of ecological and security issues of battery electric vehicles

  • Sanjeev Kumar;Amit Pal
    • Advances in Energy Research
    • /
    • 제8권3호
    • /
    • pp.165-174
    • /
    • 2022
  • Environmental sustainability is critical; else, the whole planet would face climatic disasters in the near future. A transportation system based on electric vehicles is assumed to be capable of providing long-term mobility. However, despite several attempts by national and international authorities, a great aim could not be met in India or the rest of the globe. Existing electric cars have a number of limits and obstacles. This report highlighted significant environmental and safety-related constraints that contribute to the low adoption rate of BEVs in India. A SWOT analysis was also carried out to identify the important elements influencing the future of BEV penetration in India.

A CYBER SECURITY RISK ASSESSMENT FOR THE DESIGN OF I&C SYSTEMS IN NUCLEAR POWER PLANTS

  • Song, Jae-Gu;Lee, Jung-Woon;Lee, Cheol-Kwon;Kwon, Kee-Choon;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.919-928
    • /
    • 2012
  • The applications of computers and communication system and network technologies in nuclear power plants have expanded recently. This application of digital technologies to the instrumentation and control systems of nuclear power plants brings with it the cyber security concerns similar to other critical infrastructures. Cyber security risk assessments for digital instrumentation and control systems have become more crucial in the development of new systems and in the operation of existing systems. Although the instrumentation and control systems of nuclear power plants are similar to industrial control systems, the former have specifications that differ from the latter in terms of architecture and function, in order to satisfy nuclear safety requirements, which need different methods for the application of cyber security risk assessment. In this paper, the characteristics of nuclear power plant instrumentation and control systems are described, and the considerations needed when conducting cyber security risk assessments in accordance with the lifecycle process of instrumentation and control systems are discussed. For cyber security risk assessments of instrumentation and control systems, the activities and considerations necessary for assessments during the system design phase or component design and equipment supply phase are presented in the following 6 steps: 1) System Identification and Cyber Security Modeling, 2) Asset and Impact Analysis, 3) Threat Analysis, 4) Vulnerability Analysis, 5) Security Control Design, and 6) Penetration test. The results from an application of the method to a digital reactor protection system are described.

독립형 태양광 발전 시스템의 무정전 전력공급을 위한 시스템 용량 최적 선정에 관한 연구 (A Study on the Optimal System Sizing of the Standalone Photovoltaic Power Generation System for Uninterruptible Power Supply)

  • 김기영;최우진
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.77-85
    • /
    • 2018
  • Renewable energy has been increasingly used and widely acclaimed as one of the solutions to rampant environmental problems. Among numerous kinds of renewable sources, the penetration rate of the PV system is relatively higher than that of others due to ease of installation. However, one disadvantage of the PV system is its dependence on weather condition. The PV system is especially critical when it is used for standalone systems because it cannot operate when the power generated from a PV module is not enough. Therefore, PV systems are often used with an energy storage system, such as batteries, to store backup energy when the weather condition is insufficient to supply power to the system. Blackout time can be reduced by increasing the size of the energy storage system, but it is a trade-off with system cost. In this work, optimal sizing of a standalone PV system is proposed to supply power to the system without blackout. The sizing of PV modules and batteries is performed by a simulation based on actual irradiation data collected during the past five years. The Life cycle costing of each system is evaluated to determine an optimal set of PV modules and batteries among several different combinations. The standalone PV system designed by the proposed method can supply power to the system with no interruption as long as the weather condition is similar to those of the past five years.

테일러드 블랭크용 박판 강재의 레이저 용접성 (II) -이음 형상이 용접성에 미치는 영향- (Laser Weldability of Sheet Steels for Tailored Blank Manufacturing (II) -Effect of Joint Configuration-)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • 제16권2호
    • /
    • pp.100-110
    • /
    • 1998
  • In this paper, the laser weldability of thin gage steels for automobile application is discussed. Welding was carried out with a high power carbon dioxide laser system, and the laser energy was concentrated through a plano-convex lens. Test results showed that the joint gap in the butt welding proved to be one of the critical conditions for an acceptable weld. In the case where the ratio of the gap clearance to the material thickness was slightly bigger than optimal value, the weld strength was reduced showing weld metal fracture. It was possible to obtained a weld penetration ratio of 0.91 when the vertical offset ratio was controlled to be 0.4 or smaller. Results also demonstrated that the weld strength of the lap joint was influenced by travel speed. At the travel speeds lower than 37 mm/s, the weld strength indicated higher value than that of class A recommendation strength of a resistance spot weld based on the KS code. It was clear that the complicated effect of specimen alignment should be considered so as to make a sound weld with high integrity when the laser process was applied to the long weld line.

  • PDF

Micro Hall probe array를 이용한 YBa$_2Cu_3O_7$ 단결정 내부의 자속 운동 측정 (Vortex dynamics in YBa$_2Cu_3O_7$ single crystals measured by micro Hall-probe array)

  • 심성엽;황현국;이창우;이태원;김동호
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.189-195
    • /
    • 1999
  • We have studied the vortex dynamics in YBa$_2Cu_3O_7$ single crystals with columnar defects using micro Hall-probe array. The Hall-probe array technique allowed a simultaneous measurement of the time and spatial dependence of the vortex density so that more detailed information on flux dynamics could be obtained. We found that field profiles inside sample were similar to the Bean's critical state model from the magnetic hysteresis measurement. Normalized relaxation rates were maximum near the center and decreased toward the edge if applied field H$_{app}$ is greater than the penetration field H. But applied magnetic field H$_{app}$ is less than H, relaxation rates were minimum near the center and increased toward edge. We found that glassy exponent ${\mu}$ has the value of ${\sim}$ 1 whose corresponding vortex motion is half-loop excitation. However, single vortex creep, ${\mu}$ ${\sim}$ 1/7, was also found at 30 K and H$_{app}$ ${\cong}$ H'. Calculation of activation energy, U, was possible from direct analysis of the local relaxation data using the basic diffusion equation. From these results, we found that U increases logarithmically with time and U around center was lower than that at the edge.

  • PDF

4-biphenyl acetate 수용액에서 Cetyltrimethyl Ammonium Bromide의 미셀화에 관한 연구 (Study on the micellization of cetyltrimethyl ammonium bromide in 4-biphenyl acetate solution)

  • 오정희
    • 분석과학
    • /
    • 제8권2호
    • /
    • pp.107-116
    • /
    • 1995
  • 양이온 계면활성제인 cetyltrimethyl ammonium bromide(CTAB)를 첨가함에 따라 4-biphenyl acetate ($BPA^-$) 음이온의 202nm band의 흡광도 변화를 측정하여 CTAB의 CMC를 구하였다. 또한 $30^{\circ}C{\sim}70^{\circ}C$의 온도범위에서 CTAB의 미셀화 과정에 수반되는 열역학적 파라미터를 구하였다. 이 온도범위에서 CTAB의 미셀화 자유에너지는 음의 값을 나타내며 미셀화 엔트로피(${\Delta}S^{\circ}m$)는 큰 양의 값을 나타내고 있다. CTAB의 미셀화 과정은 자발적인 상전이(phase transition) 현상임을 알 수 있었다. $300MHz\;H^1-NMR$ 자료로부터 $BPA^-$ 음이온의 CTAB 미셀내의 배향을 알 수 있었다. $BPA^-$ 음이온의 방향족 기가 CTAB 미셀내의 palisade layer까지 침투하여 혼합 미셀을 형성함을 알 수 있었다.

  • PDF