DOI QR코드

DOI QR Code

Identification and SWOT analysis of ecological and security issues of battery electric vehicles

  • Sanjeev Kumar (Department of Mechanical, Production & Industrial Engineering, Delhi Technological University) ;
  • Amit Pal (Department of Mechanical, Production & Industrial Engineering, Delhi Technological University)
  • Received : 2021.07.15
  • Accepted : 2022.09.02
  • Published : 2022.09.25

Abstract

Environmental sustainability is critical; else, the whole planet would face climatic disasters in the near future. A transportation system based on electric vehicles is assumed to be capable of providing long-term mobility. However, despite several attempts by national and international authorities, a great aim could not be met in India or the rest of the globe. Existing electric cars have a number of limits and obstacles. This report highlighted significant environmental and safety-related constraints that contribute to the low adoption rate of BEVs in India. A SWOT analysis was also carried out to identify the important elements influencing the future of BEV penetration in India.

Keywords

References

  1. Ajzen, I. (2011), "The theory of planned behaviour: Reactions and reflections", Psycholog. Health, 26(9), 1113-1127. https://doi.org/10.1080/08870446.2011.613995.
  2. Alagumalai, A. (2014), Internal combustion engines : Progress and prospects, 38, 561-571. https://doi.org/10.1016/j.rser.2014.06.014.
  3. AUTOCAR (2021), https://www.autocarindia.com/car-news/smev-cumulative-ev-sales-down-1941-percent-in-fy2021-420595. Accessed on 21.03.2022.
  4. Balasubramaniam, B., Singh, N., Verma, S. and Gupta, R.K. (2020), "Recycling of lithium from li-ion batteries", Encyclopedia of Renewable and Sustainable Materials, 546-554. https://doi.org/10.1016/b978-0-12-803581-8.10764-7.
  5. Bussiness Standard (2022), https://www.business-standard.com/article/automobile/nearly-400-000-electric-vehicles-in-india-up-leads-race-delhi-at-2nd-spot-119071500233_1.html.
  6. Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N. and Li, B. (2021), "A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards", J. Energ. Chem., 59, 83-99. https://doi.org/10.1016/j.jechem.2020.10.017.
  7. Costa, E., Horta, A., Correia, A., Seixas, J., Costa, G. and Sperling, D. (2020), "Diffusion of electric vehicles in Brazil from the stakeholders' perspective", Int. J. Sust. Transport., 1-14. https://doi.org/10.1080/15568318.2020.1827317.
  8. CSR, I. (2017), Overview on India's 2030 Vision on Electric Vehicle. https://indiacsr.in/overview-indias-2030-vision-electric-vehicle/. Accessed on 21.11.2.21.
  9. Egbue, O. and Long, S. (2012), "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions", Energ. Policy, 48, 717-729. https://doi.org/10.1016/j.enpol.2012.06.009.
  10. Electric vehicle industry in India (2021), https://en.wikipedia.org/wiki/Electric_vehicle_industry_in_India.
  11. Goel, S., Sharma, R. and Rathore, A.K. (2021), "A review on barrier and challenges of electric vehicle in India and vehicle to grid optimisation", Transport. Eng., 4, 100057. https://doi.org/10.1016/j.treng.2021.100057.
  12. IEA (2021), Global Energy Review : CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level INTERNATIONAL ENERGY. https://iea.blob.core.windows.net/assets/c3086240-732b-4f6a-89d7-db01be018f5e/GlobalEnergyReviewCO2Emissionsin2021.pdf. Accessed on 25.11.2021.
  13. Kumar, S.and Pal, A. (2021), "Challenges of battery production: A case study of electrical vehicles in India", In (Eds., P.K. Kumar, A., Pal, A., Kachhwaha, S.S., Jain), Lecture Notes in Mechanical Engineering 1129-1142. https://doi.org/10.1007/978-981-15-9678-0_94.
  14. Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F. and Droeder, K. (2018), "Current status and challenges for automotive battery production technologies", Nature Energ., 3(4), 290-300. https://doi.org/10.1038/s41560-018-0130-3.
  15. Larsson, F., Andersson, P., Blomqvist, P. and Mellander, B.E. (2017), "Toxic fluoride gas emissions from lithium-ion battery fires", Scientific Reports, 7(1), 1-13. https://doi.org/10.1038/s41598-017-09784-z.
  16. Leach, F., Kalghatgi, G., Stone, R. and Miles, P. (2020), The scope for improving the efficiency and environmental impact of internal combustion engines, 1. https://doi.org/10.1016/j.treng.2020.100005.
  17. Lu, W., Belharouak, I., Liu, J. and Amine, K. (2007), Thermal properties of Li 4 / 3 Ti 5 / 3 O 4/ LiMn 2 O 4 cell. 174. 673-677. https://doi.org/10.1016/j.jpowsour.2007.06.199.
  18. Madurai Elavarasan, R., Afridhis, S., Vijayaraghavan, R.R., Subramaniam, U. and Nurunnabi, M. (2020), "SWOT analysis: A framework for comprehensive evaluation of drivers and barriers for renewable energy development in significant countries", Energy Reports, 6, 1838-1864. https://doi.org/10.1016/j.egyr.2020.07.007.
  19. Mahmoudzadeh Andwari, A., Pesiridis, A., Rajoo, S., Martinez-Botas, R. and Esfahanian, V. (2017), "A review of Battery Electric Vehicle technology and readiness levels", Renew. Sust. Energ. Rev., 78, 414-430. https://doi.org/10.1016/j.rser.2017.03.138.
  20. Maleki, H., Deng, G., Anani, A. and Howard, J. (1999), "Thermal stability studies of li-ion cells and components", J. Electrochem. Soc., 146(9), 3224-3229. https://doi.org/10.1149/1.1392458.
  21. Matsumoto, K. and Shiraki, H. (2018), "Energy security performance in Japan under di ff erent socioeconomic and energy conditions", Renew. Sust. Energ. Rev., 90, 391-401. https://doi.org/10.1016/j.rser.2018.03.070.
  22. NEMMP (2012), National Electric Mobility Mission Plan 2020. https://dhi.nic.in/writereaddata/content/nemmp2020.pdf. Accessed on 21.09.2021
  23. Pal, K., Singh, L.B. and Kumar, S. (2020), "Application of intuitionistic fuzzy number for selecting optimum power source of vehicles", WEENTECH Proceedings in Energy, 232-240. https://doi.org/10.32438/wpe.0602167.
  24. Pal K., Bahadur Singh, L. and Kumar, S. (2021), "Selection of a vehicle using multi-attribute decision making", In (Eds., P.K. Kumar, A., Pal, A., Kachhwaha, S.S., Jain), Lecture Notes in Mechanical Engineering, 1103-1117. https://doi.org/10.1007/978-981-15-9678-0_92.
  25. Raslavicius, L., Azzopardi, B., Kersys, A., Starevicius, M., Bazaras, Z. and Makaras, R. (2015), "Electric vehicles challenges and opportunities: Lithuanian review", Renew. Sust. Energ. Rev., 42, 786-800. https://doi.org/10.1016/j.rser.2014.10.076.
  26. Ruiz, V., Pfrang, A., Kriston, A., Omar, N., Bossche, P. Van Den and Boon-brett, L. (2018), "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles", Renew. Sust. Energ. Rev., 81, 1427-1452. https://doi.org/10.1016/j.rser.2017.05.195.
  27. Said, Z., Rahman, S., Sharma, P., Amine Hachicha, A. and Issa, S. (2022), "Performance characterization of a solar-powered shell and tube heat exchanger utilizing MWCNTs/Water-based nanofluids: An experimental, numerical, and artificial intelligence approach", Appl. Therm. Eng., 118633. https://doi.org/10.1016/J.APPLTHERMALENG.2022.118633.
  28. Senpong, C. and Wiwattanadate, D. (2022), Applied Environmental Research Sustainable Energy Transition in Thailand : Drivers, Barriers and Challenges of Waste-to-Energy at Krabi Province, 44(2), 32-43. https://doi.org/https://doi.org/10.35762/AER.2022.44.2.3.
  29. Sharma, N., Agarwal, A.K. and Eastwood, P. (2018), "Introduction to air pollution and its control", Air Pollution and Control, Energy, Environment, and Sustainability, 3-7. https://doi.org/doi.org/10.1007/978-981-10-7185-0_1.
  30. Sharma, P. (2020), "Gene expression programming-based model prediction of performance and emission characteristics of a diesel engine fueled with linseed oil biodiesel/diesel blends: An artificial intelligence approach", Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1-15. https://doi.org/10.1080/15567036.2020.1829204
  31. Sharma, P. (2021), Combustion and Thermal Performance of Dual Fuel Engine : Influence of Controlled Producer Gas Substitution with Pilot B20 ( WCOME Biodiesel - Diesel ) Blending. 20.
  32. Sharma, P. and Sahoo, B.B. (2022), "An ANFIS-RSM based modeling and multi-objective optimization of syngas powered dual-fuel engine", Int. J. Hydrogen. Energ., https://doi.org/10.1016/J.IJHYDENE.2022.04.093.
  33. Shashank, G., Sairam, D., Reddy, B. R., Afreed, K. and Sridharan, R. (2020), "Analysis of enablers and barriers in adopting electric vehicles in India: DEMATEL-ISM approach", Proceedings of the 2020 International Conference on System, Computation, Automation and Networking, ICSCAN 2020. https://doi.org/10.1109/ICSCAN49426.2020.9262394.
  34. Soman, A., Kaur, H., Jain, H. and Ganesan, K. (2020), Can Electric Mobility Support India's Sustainable Economic Recovery Post COVID-19? India's Electric Vehicle Transition. November.
  35. Statistical Review of World Energy 2021. (2021), Statistical Review of World Energy globally consistent data on world energy markets. and authoritative publications in the field of energy. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf. Accessed on 27.03.2022.
  36. Tarei, P. K., Chand, P. and Gupta, H. (2021), "Barriers to the adoption of electric vehicles: Evidence from India", J. Cleaner Production, 291, 125847. https://doi.org/10.1016/j.jclepro.2021.125847.
  37. Voitic, G., Wiltsche, H., Stangl, C., Fauler, G. and Thaler, A. (2015), Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - impact of state of charge and overcharge, 57171-57186. https://doi.org/10.1039/c5ra05897j.
  38. Yang, Y., Yao, E., Yang, Z. and Zhang, R. (2015), Modeling the charging and route choice behavior of BEV drivers. https://doi.org/10.1016/j.trc.2015.09.008.