• Title/Summary/Keyword: Critical Load

Search Result 1,597, Processing Time 0.023 seconds

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.

Dynamic Stability of a Cantilevered Timoshenko Beam on Partial Elastic Foundations Subjected to a Follower Force

  • Ryu, Bong-Jo;Shin, Kwang-Bok;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1355-1360
    • /
    • 2006
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented.

Buckling of non-homogeneous orthotropic conical shells subjected to combined load

  • Sofiyev, A.H.;Kuruoglu, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • The buckling analysis is presented for non-homogeneous (NH) orthotropic truncated conical shells subjected to combined loading of axial compression and external pressure. The governing equations have been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties of which vary continuously in the thickness direction. By applying Superposition and Galerkin methods to the governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of non-homogeneous orthotropic truncated conical shells with simply supported boundary conditions are obtained. The results are verified by comparing the obtained values with those in the existing literature. Finally, the effects of non-homogeneity, material orthotropy, cone semi-vertex angle and other geometrical parameters on the values of the critical combined load have been studied.

Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates (Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동)

  • 김진봉;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

Deduction of Critical Components for establishing the Environmental Load Reduction Guideline in Construction Phase (시공단계 환경부하 저감 가이드라인 구축을 위한 주요 구성항목 도출)

  • Kim, Chang-Won;Kim, Chun-Hak;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.127-128
    • /
    • 2012
  • Recently, Construction industry has been trying to reduce environmental loads reflecting the global trend 'Green Growth'. Internal and External countries are provided 'green building certification', 'relevant law/regulations', 'guideline to life cycle', however, construction phase has been overlooked though environmental loads occurred intensively in this phase. Therefore, this study intend to deduct components reflected the guideline in construction phase and assess them quantitatively. The basis data is collected through survey targeting construction managers and related researchers and analyze these data using Analytic Hierarchy Process.

  • PDF

The Characteristics of Painted Coating on Aluminum Sheet by Sending Conditions (알루미늄 판재의 센딩조건에 따른 도장특성 평가)

  • Yoon, Han-Ki;Choi, Seok-In;Lee, Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.44-48
    • /
    • 2011
  • Researchers suggested painted coating characteristics of aluminum sheet by various sending condition. Painted coating is used to protect the surface of the blocks from the interior and exterior. It is also used to enhance the value of automobiles and ship materials. This process makes the materials surface for protection and elegance. Although analysis of the roughness and critical scratch load of painted coating is important, the effects of this material have not progressed much. In this study, the characteristics of painted coating in the other conditions of the polished aluminum sheet were investigated. The results of both various conditions and initial roughness values were almost similar to final values after painted coating.

A Study on the characteristics of crack propagation in stainless steel wellding zone by AE Method (SUS 강판 용접부의 AE 방법에 의한 피로파괴전파 특성에 대한 연구)

  • 신근하;김용수
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.50-55
    • /
    • 1991
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, cracd geometry and mechanical properties. It seems to be very important to investihate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their intehrity. In this experimental research, fracture behaviors of moterials were investigated by using Acoustic Emission(AE) technique. The fracturing processes of materials were estimated through both the tension specimens. For the detrmlnatlon of yied strength or fracture toughness, the critical applied load at the crack initiation and propagation is thought to be very important. The critical applied load(PQ) was determined through AE signal. The source of AE signal was estimated by fractography analysis. These experimental results may contribute to the safety analyses and the evaluation of strength of structures.

  • PDF

An Analysis on Power Demand Reduction Effects of Demand Response Systems in the Smart Grid Environment in Korea

  • Won, Jong-Ryul;Song, Kyung-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1296-1304
    • /
    • 2013
  • This study performed an analysis on power demand reduction effects exhibited by demand response programs, which are advanced from traditional demand-side management programs, in the smart grid environment. The target demand response systems for the analysis included incentive-based load control systems (2 month-ahead demand control system, 1~5 days ahead demand control system, and demand bidding system), which are currently implemented in Korea, and price-based demand response systems (mainly critical peak pricing system or real-time pricing system, currently not implemented, but representative demand response systems). Firstly, the status of the above systems at home and abroad was briefly examined. Next, energy saving effects and peak demand reduction effects of implementing the critical peak or real-time pricing systems, which are price-based demand response systems, and the existing incentive-based load control systems were estimated.

Study on the fatigue Limit at Random Contact Loading (불규칙 접촉하중에서의 피로한도에 관한 연구)

  • Ok, Young-Gu;An, Deuk-Man;Cho, Yong-Ju;Lee, Hyun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.84-91
    • /
    • 2002
  • This paper analyzes the subsurface stress at the spherical contact using Hamilton equation, and with that data, calculates the fatigue limit under the variations of friction coefficient using fatigue theory. After rough surface being made, this paper figures out the random load generated by contacting to the rough surface, analyzes the stress of its subsurface, and calculates the fatigue limit of the rough surface using fatigue theory. The three parts of the fatigue theory are applied, which are critical plane theory, stress invariant theory and mesoscopic theory.

A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface (은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구)

  • 공호성;양승호;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.377-383
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were per-formed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of triboiogical behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.