• Title/Summary/Keyword: Critical Dynamic Pressure

Search Result 109, Processing Time 0.028 seconds

Extended Use of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome: A Retrospective Multicenter Study

  • Kim, Won-Young;Park, SeungYong;Kim, Hwa Jung;Baek, Moon Seong;Chung, Chi Ryang;Park, So Hee;Kang, Byung Ju;Oh, Jin Young;Cho, Woo Hyun;Sim, Yun Su;Cho, Young-Jae;Park, Sunghoon;Kim, Jung-Hyun;Hong, Sang-Bum
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.3
    • /
    • pp.251-260
    • /
    • 2019
  • Background: Beyond its current function as a rescue therapy in acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) may be applied in ARDS patients with less severe hypoxemia to facilitate lung protective ventilation. The purpose of this study was to evaluate the efficacy of extended ECMO use in ARDS patients. Methods: This study reviewed 223 adult patients who had been admitted to the intensive care units of 11 hospitals in Korea and subsequently treated using ECMO. Among them, the 62 who required ECMO for ARDS were analyzed. The patients were divided into two groups according to pre-ECMO arterial blood gas: an extended group (n=14) and a conventional group (n=48). Results: Baseline characteristics were not different between the groups. The median arterial carbon dioxide tension/fraction of inspired oxygen ($FiO_2$) ratio was higher (97 vs. 61, p<0.001) while the median $FiO_2$ was lower (0.8 vs. 1.0, p<0.001) in the extended compared to the conventional group. The 60-day mortality was 21% in the extended group and 54% in the conventional group (p=0.03). Multivariate analysis indicated that the extended use of ECMO was independently associated with reduced 60-day mortality (odds ratio, 0.10; 95% confidence interval, 0.02-0.64; p=0.02). Lower median peak inspiratory pressure and median dynamic driving pressure were observed in the extended group 24 hours after ECMO support. Conclusion: Extended indications of ECMO implementation coupled with protective ventilator settings may improve the clinical outcome of patients with ARDS.

A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System (절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구)

  • 윤석철
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

Numerical Simulation of Structural Response in Bow Collision (1st Report) (선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보))

  • 박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Design (선수부 설계시 구조거동과 충돌격벽에 미치는 영향)

  • 신영식;박명규
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.219-231
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effects of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

Comparative Study on Water Hammer for Pump Station in High Pressurized Pipes in Kuwait

  • Shim, Kyu Dae;Kang, Yong Suk;Choung, Joon Yeon;Abdellatif, Mohamed;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.265-269
    • /
    • 2017
  • Because of abrupt changes for velocity in water, transient flow is occurred in practical life. To reduce and avoid the high or low pressure of pipe network system, various surge protection facilities are used to prevent the risk in pipe network system. Especially, we focused on study not only preventing positive and negative pressure but also selecting adequate equipment for high pressurized pipelines. Several critical cases were considered by undertaking a steady state hydraulic study and transient dynamic simulation and we suggested that the surge vessel of various surge protection system was recommended to control high and low pressures on pipeline system in perspective.

  • PDF

Effects of Combustor Stages on M501J Gas Turbine Combustion (M501J 가스터빈 연소기 단별 연료비율이 연소상태에 미치는 영향 고찰)

  • Yu, Won-Ju;Chung, Jin-Do
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Most of gas turbine combined cycle power plants are located in urban areas to provide peak load and district heating. However, NOx(nitrogen oxides) of exhaust gas emission from the power plants cause additional fine dust and thus it has negative impact on the urban environment. Although DLN(dry low NOx) and multi-stage combustors have been widely applied to solve this problem, they have another critical problem of damages to combustors and turbine components due to combustion dynamic pressure. In this study, the effect of different fuel ratio on NOx emission and pressure fluctuation was investigated regarding two variable conditions; combustor stages and power output on M501J gas turbine.

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors (다종의 동축 스월형 단일 분사기 연소 특성에 관한 실험적 연구)

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.85-94
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principal design parameters. a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

Seismic performances of three- and four-sided box culverts: A comparative study

  • Sun, Qiangqiang;Peng, Da;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.49-63
    • /
    • 2020
  • Studying the critical response characteristics of box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this work, a numerical parametric study is conducted on various soil-culvert systems, aiming to highlight the critical difference in the seismic performances between three- and four-sided culverts. Two-dimensional numerical models consider a variety of burial depths, flexibility ratios and foundation widths, assuming a visco-elastic soil condition, which permits to compare with the analytical solutions and previous studies. The results show that flexible three-sided culverts at a shallow depth considerably amplify the spectral acceleration and Arias intensity. Larger racking deformation and rocking rotation are also predicted for the three-sided culverts, but the bottom slab influence decreases with increasing burial depth and foundation width. The bottom slab combined with the burial depth and structural stiffness also significantly influences the magnitude and distribution of the dynamic earth pressure. The findings of this work shed light on the critical role of the bottom slab in the seismic responses of box culverts and may have a certain reference value for the preliminary seismic design using R-F relation.

Finite Element Analysis on Standing Wave Phenomenon of a Tire Considering Tread Pattern (트레드 패턴을 고려한 타이어의 스탠딩 웨이브 현상에 대한 유한 요소 해석)

  • Kim, Kee-Woon;Jeong, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • Each tire has a critical speed at which a standing wave phenomenon occurs along the circumferential direction. If the standing waves are formed, the tire temperature is rapidly increased and it leads to tire failure eventually. As the formation of the standing waves is closely related to the tire stiffness, the effect of the tread pattern needs to be studied numerically. The standing wave phenomenon of a tire model with tread pattern is predicted by an explicit finite element method. The critical speed of the tire with tread pattern is in a good agreement with the experiment and is $15{\sim}20\;km/h$ lower than that of the tire without tread pattern. The effects of the inflation pressure and the vertical load on the critical speed are also investigated by using the tire model with tread pattern.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.