• 제목/요약/키워드: Critical Analysis

검색결과 8,630건 처리시간 0.036초

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

요인분석법을 이용한 건설시공 현장에서의 6시그마 개선활동 성공요인에 관한 연구 (A Study on Critical Success Factors for 6 Sigma Project in Construction Site using Factor Analysis)

  • 김채수
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.125-134
    • /
    • 2014
  • 6 sigma is a management innovation strategy which improves most of all managerial processes including transactional and project based operations such as marketing, purchasing, accounting, and construction. Even though 6 sigma is trying to solve problems from the customer's viewpoint in the scientific manner, project leader feels some difficulties in implementation because of several reasons. Especially the difficulties are prevalent in construction site. This paper investigates the cause of the difficulties through questionnaires, analyzes the investigation results, and verifies the critical success factors of 6 sigma implementation. Factor analysis has been usually employed in reducing quantity of data and summarizing information chaos. In this study, several variables from questionnaires are grouped into just only four factors by the process of factor analysis. The critical success factors are extracted as project management system, implementation mechanism, site condition, and project ownership. Some ideas for each individual success factor are suggested, which are expected to be useful in successful implementation of 6 Sigma in construction site.

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

Location determining method of critical sliding surface of fillings in a karst cave of tunnel

  • Lin, P.;Li, S.C.;Xu, Z.H.;Huang, X.;Pang, D.D.;Wang, X.T.;Wang, J.
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.415-421
    • /
    • 2018
  • A location determining method is proposed for critical sliding surface in the stability analysis of the filling materials in karst caves. First, a preliminary location of the sliding surface is determined based on simulation results which includes displacement contour and plastic zone. The sliding surface will locate on the bottom contact interface when the friction angle is relative small. However, a weakened contact interface always becomes the critical sliding surface no matter what the friction angle is. Then when the friction angle becomes larger, the critical sliding surface inside fillings can be determined by a parabola, the coefficient of which increases linearly with the friction angle under the same cohesion. Finally, the critical sliding surface approximately remains unchanged with friction angle. The influence of cohesion is similar to that of friction angle. Although affected by shape, size or position of the karst cave, the critical sliding surface mainly depends on both friction angle and cohesion. Thus, this method is always useful in determining the critical sliding surface.

치기공과 학생의 자기존중감, 비판적 사고성향 및 현장실습 스트레스 간의 연관성 (Association between self-esteem, critical thinking disposition, and field practice stress of dental laboratory technology students)

  • 강월;장연
    • 대한치과기공학회지
    • /
    • 제44권3호
    • /
    • pp.81-88
    • /
    • 2022
  • Purpose: This study was conducted to verify the effects of self-esteem and critical thinking disposition on dental laboratory technology students' field practice stress. Methods: The subjects of the study were 198 dental laboratory technology students with clinical practice experience located in Gyeongsangbuk-do and Gyeongsangnam-do. The collected data were analyzed by t-test, ANOVA, correlation analysis, and linear regression analysis using IBM SPSS Statistics ver. 22.0 (IBM). Results: The average self-esteem, critical thinking disposition, and field practice stress scores were 3.76, 3.50, and 2.40, respectively. There was a significant correlation between self-esteem, critical thinking disposition, and field practice stress. It was found that the higher the self-esteem, the lower was the field practice stress. On the contrary, among the sub-items of critical thinking disposition, when intellectual fairness increased, the field practice stress decreased; however, when healthy skepticism increased, the field practice stress increased. Conclusion: Self-esteem and critical thinking disposition were both found to have a substantial effect on field practice stress. Therefore, various educational programs need to increase self-esteem and cultivate critical thinking skills for a successful field practice and field practice stress relief of laboratory technology students.

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

A LightGBM and XGBoost Learning Method for Postoperative Critical Illness Key Indicators Analysis

  • Lei Han;Yiziting Zhu;Yuwen Chen;Guoqiong Huang;Bin Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2016-2029
    • /
    • 2023
  • Accurate prediction of critical illness is significant for ensuring the lives and health of patients. The selection of indicators affects the real-time capability and accuracy of the prediction for critical illness. However, the diversity and complexity of these indicators make it difficult to find potential connections between them and critical illnesses. For the first time, this study proposes an indicator analysis model to extract key indicators from the preoperative and intraoperative clinical indicators and laboratory results of critical illnesses. In this study, preoperative and intraoperative data of heart failure and respiratory failure are used to verify the model. The proposed model processes the datum and extracts key indicators through four parts. To test the effectiveness of the proposed model, the key indicators are used to predict the two critical illnesses. The classifiers used in the prediction are light gradient boosting machine (LightGBM) and eXtreme Gradient Boosting (XGBoost). The predictive performance using key indicators is better than that using all indicators. In the prediction of heart failure, LightGBM and XGBoost have sensitivities of 0.889 and 0.892, and specificities of 0.939 and 0.937, respectively. For respiratory failure, LightGBM and XGBoost have sensitivities of 0.709 and 0.689, and specificity of 0.936 and 0.940, respectively. The proposed model can effectively analyze the correlation between indicators and postoperative critical illness. The analytical results make it possible to find the key indicators for postoperative critical illnesses. This model is meaningful to assist doctors in extracting key indicators in time and improving the reliability and efficiency of prediction.

야전 치명고장자료를 이용한 함정전투체계 신뢰성 분석 및 활용 방안 (A Study of Reliability Analysis and Application on Naval Combat System Using Field Critical Failure Data)

  • 김영진;오현승;최봉완
    • 산업경영시스템학회지
    • /
    • 제39권4호
    • /
    • pp.49-59
    • /
    • 2016
  • Naval combat system developed in-country is progressing at an alarming rate since 2000. ROK navy will be achieved all vessels that have combat system in the near future. The importance of System Engineering and Integrated Logistics Support based on reliability analysis is increasing. However, reliability analysis that everyone trusted and recognized is not enough and applied practically for development of Defense Acquisition Program. In particular, Existing Reliability Analysis is focusing on reliability index (Mean Time Between Failure (MTBF) etc.) for policy decision of defense improvement project. Most of the weapon system acquisition process applying in the exponential distribution simply persist unreality due to memoryless property. Critical failures are more important than simple faults to ship's operator. There are no confirmed cases of reliability analysis involved with critical failure that naval ship scheduler and operator concerned sensitively. Therefore, this study is focusing on Mean Time To Critical Failure (MTTCF), reliability on specific time and Operational Readiness Float (ORF) requirements related to critical failure of Patrol Killer Guided missile (PKG) combat system that is beginning of naval combat system developed in-country. Methods of analysis is applied parametric and non-parametric statistical techniques. It is compared to the estimates and proposed applications. The result of study shows that parametric and non-parametric estimators should be applied differently depending on purpose of utilization based on test of normality. For the first time, this study is offering Reliability of ROK Naval combat system to stakeholders involved with defense improvement project. Decision makers of defense improvement project have to active support and effort in this area for improvement of System Engineering.

API 610 BB5 펌프 개발을 위한 로터다이나믹 특성분석 (Rotordynamic Characteristics Analysis for API 610 BB5 Pump Development)

  • 김병옥;이안성;김성기
    • 한국유체기계학회 논문집
    • /
    • 제14권4호
    • /
    • pp.38-44
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for BB5 eight stages pump as development of API 610 BB5 type pump. Dry-run analytical model, not considering operating fluid, and wet-run analytical model, considering operating fluid are established. In addition, plain circular and pressure dam bearings are chosen and it was discussed that each bearing has an effect on dynamic characteristics of pump rotor system. A rotordynamic analysis includes the critical speed map, Campbell diagram, stability, and unbalance response. As results, it was predicted that rated speed of the pump rotor passes through 1st critical speed in dry-run condition regardless of bearings, however, it was verified that, in wet-run condition, the rotor system doesn't have critical speeds even if more than twice rated speed. Hence the resonance problem caused by the critical speeds does not happen since actual operating is in wet-run condition including operating fluid. As a result of unbalance response analysis, the pump rotor has stable vibration response at rated speed, regardless of operating fluid and the proposed bearing types.

고온초전도 테이프의 임계전류밀도 분포 해석 (Critical Current Density Distribution Analysis of HTS Tape)

  • 강준선;나완수;권영길;손명환;김석환
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2002
  • It is well known that the critical current of a HTS tape has anisotropic characteristic in magnetic field. We are interested in critical current density distribution of a HTS tape. We assumed the experimentally obtained Ic-B curves do represent the local properties of HTS tapes and calculated the critical current density distribution of HTS tapes using numerical method. Also we predicted the critical current of the tapes.

  • PDF