• Title/Summary/Keyword: Cretaceous volcanic and sedimentary rocks

Search Result 66, Processing Time 0.027 seconds

Age of the volcanism and deposition determined from the Cretaceous strata of the islands of Yeosu-si (여수시 도서지역의 백악기층에 나타나는 화성활동 및 퇴적시기)

  • Park, Kye-Hun;Paik, In-Sung;Huh, Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.70-78
    • /
    • 2003
  • Sado, Chudo, Mokdo, Nangdo, and Jeokgeumdo are the islands which belong to Hwajeong-myeon, Yeosu-si, Jeollanam-do and there are various kinds of volcanic rocks, volcaniclastic sedimentary rocks, and dinosaur-fossil bearing sedimentary rocks on these islands. This study is designed to constrain geologic ages of these volcanic and sedimentary rocks. K-Ar ages of these rocks indicate that the volcanism of this area occurred mainly during the period of 91.8 ${\pm}$ 3.5∼65.5 ${\pm}$ 1.3(l$\sigma$) Ma. Deposition ages of the sedimentary rocks were bracketed based on the ages of the volcanic rocks and observed field relationship between sedimentary and volcanic rocks. The oldest sedimentary deposit of the area is the volcanic pebble bearing conglomerate of the Jeokgeumdo and its deposition age is ca. 81 Ma or less. The deposition age of the Chudo shale, which belongs to stratigraphically upper sequence and bears many dinosaur footprints, is at least ca. 77 Ma. Conglomerate of the Mokdo was deposited at ca. 72∼70 Ma. The deposition age of the dinosaur fossil deposit of the Sado is at least ca. 65 Ma. All the investigated volcanic and sedimentary rocks of the Yeosu islands were formed during the late Cretaceous and dinosaurs lived until the latest Cretaceous in this area.

Anisotropy of Magnetic Susceptibility of Cretaceous Volcanic Rocks in Euiseong Area (의성지역에 분포하는 백악기 화산암류에 대한 대자율 이방성연구)

  • Suk, Dongwoo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 1994
  • Euiseong sub-basin, one of three sub-basins in Kyungsang basin, consists of various sedimentary and igneous rocks of Cretaceous age. Kusandong tuff and Yucheon volcanic rocks from the sub-basin were collected for the anisotropy of magnetic susceptibility (AMS) study. Maximum directions of the AMS for Kusandong tuff and Yucheon volcanic rocks are used to detect possible source areas. Although the dispersion of the maximum directions of the AMS, mainly due to low susceptibility and/or low percent anisotropy of individual specimens, is rather large, it is possible to reveal several source areas for the volcanic rocks. Areas near the Keumseongsan and Hwasan, calderas in the study area, are identified as source areas for Yucheon volcanic rocks, while the western part of Sunamsan, another collapsed caldera in Euiseong sub-basin, is inferred to be the source area for Kusandong tuff. However, it is not possible to determine detailed source areas for groups of Yucheon volcanic rocks of different lithologies, because of poor degree of convergence of the maximum directions of the AMS results from the volcanic rocks. It is also concluded that several episodic volcanic activities centered at Keumseongsan and Hwasan calderas were responsible for the formation of Yucheon volcanic rocks in Euseong area.

  • PDF

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.

Remagnetization of the Cretaceous Sedimentary Rocks in the Yeongdong Basin (영동분지에 분포하는 백악기 퇴적암류의 재자화)

  • Doh, Seong-Jae;Cho, Yun-Young;Suk, Dongwoo
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.193-209
    • /
    • 1996
  • Paleomagnetic and rock-magnetic data have been obtained from the Cretaceous rocks (Yeongdong Group, volcanic rock, and intrusive rocks) which are exposed in the Yeongdong Basin. The characteristic remanent directions of these rocks, which are mainly carried by magnetite and hematite of single and pseudo-single domain sizes, are normally magnetized (Yeongdong Group: $D/I=29.6/59.0^{\circ}C$, k=75.7, ${\alpha}_{95}=3.3^{\circ}$, N=25 sites, paleopole at $198.0^{\circ}E$, $66.4^{\circ}N$, K=46.1, $A_{95}=4.3^{\circ}$; volcanic rock: $D/I=352.8/44.1^{\circ}$, k=44.2, ${\alpha}_{95}=18.8^{\circ}$, N=3 sites, paleopole at $340.0^{\circ}E$, $78.8^{\circ}N$, $K=49.8^{\circ}E$, $A_{95}=17.6^{\circ}$X>; intrusive rocks: $D/I=358.4/51.9^{\circ}C$, k=20.0, ${\alpha}_{95}=13.8^{\circ}$, N=7 sites, paleopole at $338.1^{\circ}E$, $86.8^{\circ}N$, K=13.5, $A_{95}=17.1^{\circ}$). The stepwise unfolding of the characteristic remanent magnetization (ChRM) of the Yeongdong Group reveals that a maximum value of k is observed at 60% of unfolding with $D/I=13.0/58.6^{\circ}$ (k=124.62, ${\alpha}_{95}2.6^{\circ}$) indicating that the ChRM was aquired during ti1ting of the strata. This remagnetized ChRM in the sedimentary strata is due to acquisition of geomagnetic field direction at the time of formation of authigenic magnetic minerals, although it is not totally ruled out that the formation of authigenic magnetic minerals was affected indirect1y by the elevated temperature originated from the volcanic and intrusive rocks which intruded between Late Cretaceous and Early Tertiary.

  • PDF

Stratigraphy and Petrology of the Volcanic mass in the Chilpo-Weolpo Area, the north of Pohang basin, Korea (포항분지(浦項盆地) 북부(北部)(칠포(七浦)-월포(月浦)일원)에 분포(分布)하는 화산암류(火山岩類)에 대한 암석학적(岩石學的)·층서적(層序的) 연구(硏究))

  • Yun, Sung Hyo
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 1988
  • The purpose of this study is to determine the stratigraphy of the volcanic rocks in the Chilpo-Weolpo area, the north of Pohang basin, based on field survey and lithological properties of the rocks. The volcanic pile(Chilpo tuff) overlies the Cretaceous sedimentary formation and is unconformably overlain by the Miocene Yeonil Group. The Chilpo tuff comprises a thick sequence(>200m) of pyroclastic flow deposits. Five members are distinguished, each representing separate flow units, comprising none(or weakly) to densely welded rhyolite tuff. The Chilpo tuff consists of, in ascending order, greenish weakly welded tuff, volcanic conglomerate, alternation of tuff breccias and fine tuffs, greenish none to densely welded tuff and red-brownish densely to weakly welded vitric tuff. This study revealed that the volcanic rocks in this area were formed by 4 volcanic stages. On the basis of K-Ar age($44.7{\pm}1.1\;Ma$) and lithologic data, geological age of the Chilpo tuff may be Eocene.

  • PDF

Petrlolgy of the Cretaceous Volcanic Rocks in Cheonsungsan Area, Korea. (천성산 백악기 화산암류의 암석학적 연구(1))

  • 김진섭;선종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.108-120
    • /
    • 1996
  • This study reports petrography and geochemical characteristics of the Cretaceous volcanic rocks that are distributed in the vicinity of the Cheonsungsan area, Yangsan-Gun, Gyeongsangnam-Do. The Cretaceous volcanic rocks composed of andesitic rocks, Wonhyosan tuff, Cheonsungsan tuff in ascending order. Sedimentary rock is the basement in the study area cofered with volcanic rocks. These volcanic rocks are Wonhyosan tuff and Cheonsungsan tuff that represented the early phase of the Bulgugsa igneous activity. Wonhyosan tuff are classified into dacite tuff and dacite welded tuff based on the rock texture and their mineral composition. They are covered with Cheonsungsan tuff. Dacite tuff composed of lithic lapilli ash-flow tuff and vitric ash-flow tuff. Most dacite welded tuff are lapilli ash-flow tuff. Cheonsungsan tuff overlying the Wonhyosan tuff consists of rhyolite tuff and rhyolite welded tuff. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic and sedimentary rocks. Rhyolite welded tuff is distinguishe from rhyolite tuff by is typical eelded fabrics and its rock color. According to petrochemical data, the volcanic rocks in study area belong to high-K orogenic suties. On the discriminant diagrams such as La/Yb versus Th/Yb, these rocks falls into the discriminant fields for the normal continental margin arc.

  • PDF

Geophysical Prospecting for Geothermal Resources at Northern Part of Kumseongsan, Euiseong (의성 금성산 북부지역의 지열자원 지구물리탐사)

  • Lee, Gidong;Han, Kihwan;Kim, Kibeom;Lee, Jongmoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.35-44
    • /
    • 2006
  • Various geophysical methods and geological survey were applied for prospecting of geothermal resources and the attitude of volcanic body at northern part of Kumseongsan, Euiseong. They include magnetic, self-potential, radioactive and resistivity methods, temperature logging near the earth's surface and geological survey. The results of this study are summarized as follows. Various geophysical anomalies is related to the geologically Cretaceous conduit. Anomalies of resistivity and temperature logging seem to be related to the geological structure and terrestrial heat. Small radioactive and self-potential anomalies seem to be associated with chemical character of rocks. The sedimentary rocks dip steeply toward the volcanic rocks, aquifuge. Ideal geological structure for bearing ground water and geothermal resources was founded in the study area. The study area and the adjacent two hot springs area consist of Cretaceous sedimentary and volcanic rocks, and have similar geology.

  • PDF

K-Ar Ages of Cretaceous Fossil Sites, Seoyuri, Hwasun, Southern Korea (화순 서유리의 백악기 화석산지에 대한 K-Ar 연대)

  • Kim, Cheong Bin;Kang, Seong Seung
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.618-626
    • /
    • 2012
  • The Cretaceous fossil sites of Seoyuri in Hwasun was designated as the Korean Natural Monument No. 487 in November 2007. It provides important resources for paleoenvironmental studies, including theropod trackways, plant fossils, mudcracks, ripple marks, and horizontal bedding. The Cretaceous sedimentary strata contain a wide variety of volcanic pebbles, 5-40 cm in diameter in the lower portion and are overlain by the Late Cretaceous Hwasun andesite. Whole rock absolute K-Ar age determinations were performed on six volcanic pebbles from the Cretaceous sedimentary strata and on two samples from the overlaying Hwasun andesite. These ages indicate that the rocks belong to the period between the Turonian of the late Cretaceous (91-70 Ma) and the Pliocene age of the early Cenozoic ($63.4{\pm}1.2$ and $62.1{\pm}1.2$ Ma). Thus, the K-Ar ages indicate that the maximum geological age of the dinosaur track-bearing sedimentary deposits is about ca. 70 Ma. Therefore, it suggests that the age is comparable to the formation ages of the dinosaur footprints-bearing deposits in Sado area of Yeosu (71-66Ma).

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.

Volcano-Stratigraphy and Petrology of the Volcanic Mass in the Koheung Peninsula, South Cheolla Province, Korea (전남(全南) 고흥반도(高興半島)에 분포(分布)하는 화산암류(火山岩類)의 화산층서(火山層序) 및 암석학적(岩石學的) 연구(硏究))

  • Yun, Sung Hyo;Hwang, In Ho
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.335-348
    • /
    • 1988
  • The author aimed to describe the volcano-stratigraphy and petrology of the volcanic mass in the Koheung peninsula, South Cheolla province. The volcanic mass is composed of the volcanics and intrusives of late Cretaceous which extruded the Pre-cambrian metamorphic(Jirisan gneiss complex) and the early Cretaceous sedimentary(Duwon Formation) basement. The volcanic pile consists of, in ascending order, Bibongsan andesite, Koheung tuff and breccia, and Palyeongsan welded tuff, and are intruded by ring intrusives( intrusive breccia, andesite porphyry, intrusive rhyolite and fine-grained quartz-diorite) and central pluton(diorite, quartz monzodiorite, biotite granite and micrographic granite). Bibongsan andesite mainly consists of andesite tuff and lava. Koheung tuff consists of alternation of fine tuff, coarse tuff and lapilli tuff, and Palyeongsan welded tuff which overlies Koheung tuff, comprises K-feldspar and quartz phenocrysts, elongated brown fiamme, lithic fragments in matrix of devitrified brown glass shards, and mainly consists of rhyodacite to rhyolite vitric ash-flow tuff. The results of petrochemical studies of the igneous rocks suggest that the rocks were a serial differentiational products of fractional crystallization of calc-alkaline magma series. This study reveals that the volcanic mass in this area is inferred to the remnant of the resurgent cauldron, measuring 30 by 25 km in diameter. The cauldron block was lowered at least 1,000 m by ring fault displacement.

  • PDF