• Title/Summary/Keyword: Creep tests

Search Result 359, Processing Time 0.052 seconds

Tensile Test and Creep Tests of ETFE Membrane (ETFE 막재에 대한 인장실험과 크리프 실험)

  • Kim, Jae-Yeol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • Uniaxial tensile tests of ETFE membrane are performed in this paper. Three kinds ETFE membrane with different thickness are used in the tests. The tensile strength, the tensile strain at break and the stress-strain curve are obtained from the tests. Futhermore, The cycle loading test of ETFE membrane is carried out through using different values of cycle stress. The residual strain, the relaxation of stress and the change of the elastic modulus of foil are investigated. In the creep test, three kinds of temperature (25, 40 and 60 $^{\circ}C$)and three kinds of stress(3,6and9 MPa) are set respectively and the creep time lasts 24 hours.

  • PDF

Characteristics of Short-Term Creep Rupture in STS304 Steels (STS304강의 단시간 크리프 파단특성 평가)

  • Kim, Seon-Jin;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.28-33
    • /
    • 2007
  • The objective of this paper is to investigate the relationship between the short-term creep rupture time and the creep rupture properties at three different elevated temperatures in STS304 stainless steel. Uniaxial constant stress creep rupture tests were performed on the steel to observe the creep rupture behaviors at the elevated temperatures of 600, 650 and 700, according to the testing matrix. It is very important to predict creep life in practical creep design problems. As one of the series of studies on the statistical modelling of probabilistic creep rupture time and the development of creep life prediction techniques, the relationship between applied stress and creep rupture behaviors, such as creep strain rate and rupture time, were investigated. In addition, the Monkman-Grant relationship was observed between the steady-state creep rate and the creep rupture time. The creep rupture surfaces observed by SEM showed up dimple phenomenon at all conditions.

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Creep Damage Evaluation of Cr-Mo Steel High-Temperature Pipeline Material for Fossil Power Plant Using Ultrasonic Test Method (초음파법을 이용한 Cr-Mo강 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens(Cr-Mo alloy steels) were carried out for the purpose of evaluation for creep damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens. we conformed that both the sound velocity decreased and attenuation coefficient linearly increased in proportion to the Increase of creep life fraction($\Phi$c).

  • PDF

Creep Characteristics of Titanium Alloy(Ti-6Al-4V) at 0.3Tm (티타늄합금(Ti-6Al-4V)의 0.3Tm에서 크리프 특성)

  • Yoon Jongho;Hwang Kyungchoon;Woo Hyun-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.117-122
    • /
    • 2005
  • Titanium alloy has widely been used as material for glasses frame parts because it has high specific strength. It is also light and harmless to human body. However, we have little design data about the mechanical properties such as the creep behaviors of the alloy. Therefore, in this study, creep tests under four constant stress conditions have been conducted with four different temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increased. Secondly, the creep activation energy gradually decrease as the stresses became bigger. Thirdly, the constant of Larson-Miller parameter on this alloy was estimated as about 2.5. Finally, the fractographs at the creep rupture showed the ductile fracture due to the intergranullar rupture and some dimples.

Rutting Potential Evaluation of Asphalt Mixtures by Repeated-Load Creep Test (반복하중 크리프시험에 의한 아스팔트 혼합물의 소성변형특성 평가)

  • Zhu L.Y.;Fwa T.F.
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.21-28
    • /
    • 2006
  • Field or laboratory wheel tracking tests have been employed for the evaluation of the rutting potential of asphalt paving mixtures. Compared to field tests, laboratory wheel tracking tests are much less expensive and more manageable for most road projects. However, most test laboratories are not equipped to perform such tests because there does not exist any standard test procedure, and the required equipment is rather expensive. Futhermore, the size of test specimens and the relatively large quantity of test mixture required present difficulties for laboratory specimen mixing and compaction. This paper describes a project conducted to study the feasibility of replacing wheel tracking testsby a repeated-load creep test for rutting potential evaluation. Comparisons were made between the results of the two tests for different test temperatures, loading speeds and applied pressures. Three types of asphalt mixtures were studied in the test program. Favorable conclusions concerning the use of the repeated-load test for rutting potential evaluation were drawn based on the findings of the experimental test results. The correlation between the two types of tests was found to be good for all threeasphalt mixtures. Adopting the repeated-load creep test would lead to cost savings since it employs standard test equipment already available in most laboratories. It would also result in substantial time savings due to the much smaller quantity of mix needed, and the ease in specimen preparation.

  • PDF

Creep of Plate Anchors Embedded in Bentonite (Bentonite에 근입된 앵커의 Creep 특성)

  • Shin, B.W.;Lee, J.D.;Shin, J.H.;Lee, B.J.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 1995
  • Anchors find their use in providing tie-back resistance for submerged footings, transmission towers, tunnels and ocean structures. Laboratory model teats were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated bentonite. The tests have been conducted with the anchor at two different moisture contents. Based an the model test results, empirical relationships between the net load, rate of strain, and time have been developed. Test results are as follows. 1) In creep tests for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time. 2) Displacement increased with the increase of the sustain load and embedded ratio in soil. 3) If the load is less than or equal to 75% of the short-term ultimate uplift capacity, a complete pullout does not occur due to creep.

  • PDF

Effect of Gamma-Irradiation Sterilization on the Creep and Wear of Ultra-High Molecular Weight Polyethylene (감마선 멸균처리가 초고분자량 폴리에틸렌의 크리프와 마모에 미치는 영향)

  • Lee, Kwon-Yong;Lee, Soo-Cheol;Lee, Keun-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.90-91
    • /
    • 1998
  • The influence of gamma-irradiation sterilization on the creep and wear performance of ultra-high molecular weight polyethylene (UHMWPE) was investigated by conducting the dynamic compressive creep tests and pin-on-disc sliding wear tests. The changes of microstructure property, relative crystallinity, oxidation index, percent crosslinking, were also measured and the relationship between these and creep and wear results was discussed.

  • PDF

Creep Life Prediction for Udimet 720 Material Using the Initial Strain Method (ISM)

  • Kong, Yu-Sik;Yoon, Han-Ki;Oh, Sae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.469-476
    • /
    • 2003
  • Despite of considerable research results or uniaxial tension creep available for superalloys, few studies have been made on high temperature creep using the Initial Stram Method (ISM) In this paper, the real-time prediction of high temperature creep strength and creep lift for the nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure static load at the temperatures of 538$^{\circ}C$. 649$^{\circ}C$, and 704$^{\circ}C$. The predictive equation derived from the ISM in creep tests showed better reliability than those from LMP (Larson-Miller Parameter) and LMP-lSM (Larson Miller Parameter-Initial Strain Method) specially for long time creep prediction (10$^3$∼10$\^$5/h).