• Title/Summary/Keyword: Creep life

Search Result 270, Processing Time 0.023 seconds

Creep Behaviours of Duplex Stainless Steel (2상 스테인리스강(STS 329J1)의 크리프 특성)

  • Hwang Kyung Choong;Kwon Jong Wan;Yoon Jong Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.42-47
    • /
    • 2005
  • Micro duplex stainless steel is used to denote a fine scale two-phase micro structure consisting austenite and firrite. The development of this structure was done by proper thermo-mechanical processing. The objective of present investigation is to study creep characteristics of this alloy. Since we have little design data about the W behaviors of the alloy. An apparatus has been designed and built fir conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of micro duplex stainless steel products and we have gotten the 1311owing results. First the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy Gradually decreases as the stresses become higher. Thirdly, the constant of Larson-Miller Parameters on this alloy is estimated as about 5. Last, the fiactographs at the creep rupture show both the ductile and brittle fracture modes according to the creep conditions.

A Study on High Temperature Crack Growth Behavior in 2.25Cr-lMo Steel Weldments at $550^{\circ}C$ ($550^{\circ}C$에서의 2.25Cr-1Mo 강 용접부의 고온 균열성장 거동에 관한 연구)

  • Kim, Ho-Kyung;Chung, Kang;Chung, Chin-Sung
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.278-284
    • /
    • 2001
  • Both creep deformation and creep crack growth experiments have been conducted on 2.25Cr-1Mo steel weldment in order to provided an information on residual life prediction of structural component weldment containing a crack. The stress exponent of creep deformation equation for the base metal and weldment at 823k were found to be 10.2 and 7.3, respectively. These two values could be assumed that dislocation climb processes are controlling the creep deformation of both materials. The creep rate of the weldment was very low, compared with that of base metal under the same applied stress. Whereas the creep crack growth rate of the weldment was almost twice higher than that of base metal under the fixed value of $C^*$. This may indicate that the weldment is stronger than the base metal in view of creep deformation and is brittle during creep crack growth due to the intrinsic microstructure of banite and relatively higher and Mn contents.

  • PDF

A Study on Stress Analysis of Small Punch-Creep Test and Its Experimental Correlations with Uniaxial-Creep Test (소형펀치-크리프 시험에 대한 응력해석과 일축 크리프 시험과의 상관성에 관한 연구)

  • Lee, Song-In;Baek, Seoung-Se;Kwon, Il-Hyun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2565-2573
    • /
    • 2002
  • A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9Cr1MoVNb steel. It was shown that the initial maximum equivalent stress, ${\sigma}_{eq{\cdot}max}$ from FE analysis was correlated with steady-state equivalent creep strain rate, ${\epsilon}_{qf-ss'}$ rupture time, $t_r$, activation energy, Q and Larson-Miller Parameter, LMP during SP-creep deformation. The simple correlation laws, ${\sigma}_{sp}-{\sigma}_{TEN}$, $P_{sp}-{\sigma}_{TEN}\; and\; Q_{sp}-Q_{TEN}$ adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at $650^{\circ}C$ as follows : $Q_{SP-P}\;{\risingdotseq}\;1.37 \;Q_{TEN},\; Q_{SP-{\sigma}}{\risingdotseq}1.53\; Q_{TEN}$.

A study on the Creep Behavieo of Rene 80 Superalloy (Rene 80초내열 합금의 크리프 거동에 관한 연구)

  • Han, Seong-Ho;Lee, Gi-Ryong;Jo, Chang-Yong;Kim, In-Bae;Kim, Hak-Min
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.575-584
    • /
    • 1993
  • The effects of atmosphere on the creep rupture properties of Ni-base superalloy Ren6 80 were investigated. Creep rupture tests were performed at $760^{\circ}C$, 657MPa and 982%, 157MPa under Ar gas atmospheres. Creep rupture mode and rupture properties (rupture life and elongation) were similar in two different atmospheres under the condition of $760^{\circ}C$, 657MPa. However, the results at $982^{\circ}C$, 157MPa showed different creep rupture mode and life between air and Ar gas atmospheres. In air, it was shown that creep cracks were initiated at surface-exposed grain boundaries and propagated along grain boundaries. In Ar gas atmosphere, the cracks were initiated at inner grain boundaries and coalesced to surface cracks which cause cup-and-cone type fracture. Due to protective oxide layer formation, air test showed longer rupture life than Ar test.

  • PDF

Nondestructive Evaluation of X20CrMoV12.1 Steel Weldment by Replica Method (Replica법에 의한 X20CrMoV12.1강 용접부의 비파괴 평가)

  • Kang Kae Myung;Choi Jong Un
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2004
  • In this study, the degree of creep damages on the weldment accelerated creep degradation was nondestructively evaluated by replica method. The frequency of creep cavities occurrence has been observed highly at the intercritical HAZ. The life fraction of weldment damaged by creep has shown from 0.25(damage grade: 2) to 0.75(damage grade: 4) when it reptured. The degree of creep damages is considered to be evaluated by the metallographic replica method which is one of nondestructive evaluation methods.

A Study on Initial Transient Behavior in Creep-Fatigue Crack Growth (크리프-피로 균열성장에서의 초기 천이거동에 대한 연구)

  • 백운봉;남승훈;윤기봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1722-1729
    • /
    • 1994
  • At early stage of creep-fatigue crack growth tests, initial transient behavior which implies high crack growth rate has been generally observed by some researchers. Since the influence of the initial transient crack growth behavior on the remaining life of components is significant, cause of it should be further studied. In this study, characteristics of the initial transient behavior of 1Cr-1Mo-0.25V steel is studied experimentally by performing creep-fatigue crack growth tests at $538^{\circ}C$ in air under trapezoidal waveshapes. It is verified that the cause of the initial transient behavior is not high ${(C_t)}_{avg}$ values due to the small scale creep condition at the early stage of test, but oxidation-dominated crack growth mechanism during the transient period which is different from the creep-dominated crack growth mechanism in steady crack growth period.

RESEARCH OF WELDING EFFECT ON STRUCTURAL INTEGRITY AT HIGH TEMPERATURE

  • Tu, Shan-Tung;Yoon, Kee-Bong
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.11-24
    • /
    • 1998
  • The invention of fusion wilding technology has brought on a revolutionary change in manufacturing industry which enables the construction of large scale high temperature plants in chemical, petrochemical and power generation industries. However, among the failure cases of high temperature components, premature failures of weldments have taken a large percentage that indicates the detrimental effect of welding on structural integrity. The accurate prediction of the high temperature behaviour of welded components is thus becoming increasingly important in order to realise an optimised design and maintenance of a plant life. In the present paper, recent research activities on high temperature behaviour of welded structures are briefly summarised. A local deformation measuring technique is proposed to determine the creep properties of weldment constituents. A damage mechanics approach is introduced to study the life reduction and ductility reduction due to the presence of a weld in high temperature structures. Finally, the high temperature creep crack growth in weldments is discussed.

  • PDF

Numerical Analysis of Corrosion Effects on the Life of Boiler Tube (보일러관의 수명에 부식이 미치는 영향에 대한 수치해석)

  • Hong, Seong-Ho;Kim, Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2812-2822
    • /
    • 2000
  • Several methods have been developed to predict the rupture time of the boiler tubes in thermal power plant. However, existing life prediction methods give very conservative value at operating stress of power plant and rupture strain cannot be well estimated. Therefore, in this study, rupture time and strain prediction method accounting for creep, corrosion and heat transfer is newly proposed and compared with the current research results. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The corrosion damage evolves by steam side and fire side corrosion. The results showed good correlation between the theoretically predicted rupture time and the current research results. And rupture strain may be well estimated by using the proposed method.

A Case Study of Remaining Life Assessment for Boiler Header (고온 보일러 헤더의 잔여수명평가 사례 연구)

  • Baek, U.B.;Lee, H.M.;Park, J.S.;Kim, D.J.;Yoon, K.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.274-279
    • /
    • 2001
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of 1Cr-0.5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_t$-parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of $(da/dt)_{avg}$ vs. $(C_t)_{avg}$ for residual life assessment.

  • PDF

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header - (Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 -)

  • Baek, Seung-Se;Lee, Dong-Hwan;Ha, Jeong-Su;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.