• Title/Summary/Keyword: Creep Stress

Search Result 609, Processing Time 0.036 seconds

Tensile Creep Properties of Concrete under Restrained Shrinkage (구속수축에 의한 콘크리트 인장크리프 특성)

  • Choi, Hoon-Jae;Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.28-29
    • /
    • 2016
  • By Testing restrained shrinkage, it is possible to estimating the cracking tendency of concrete such as time to cracking, tensile stress and tensile creep. In this study, tensile creep properties of concrete under restraint shrinkage were investigation through comparison of specimens that JIS and AASHTO proposed. As a results, tensile creep strains in concrete ring specimens were 15% higher than those in uniaxial specimens.

  • PDF

Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide (Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석)

  • Jang, Jung-Chel;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

A Study on the High Temperature Deformation Behavior of a Solid Solution Aluminium Alloy (알루미늄 고용체 합금의 고온변형 거동에 관한 연구)

  • Kim, Ho-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.346-351
    • /
    • 1997
  • The creep characteristics of an Al-5wt.% Ag alloy including the stress exponent, the activation energy for creep and the shape of the creep curve were investigated at a normalized shear stress extending from $ 10^{-5}{\;}to{\;}3{\times}10^{-4}$ and in the temperature range of 640-873 K, where silver is in solid solution. The experimental results shows that the stress exponent is 4.6, the activation energy is 141 kJ/mole, and the stacking fault energy is $180{\;}mJ/m^2$, suggesting that the creep behavior of Al-5 wt.% Ag is similiar to that reported for pure aluminum, and that under the current experimental conditions, the alloy behaves as a class II(metal class). The above creep characteristics obtained for Al-5 wt.% Ag are discussed in the light of prediction regarding deformation mechanisms in solid solution alloys.

Evaluation of Creep-Fatigue Damage of KALIMER Reactor Internals Using the Elastic Analysis Method in RCC-MR

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.566-584
    • /
    • 2001
  • In this paper, the progressive deformation and the creep-fatigue damage for the conceptually designed reactor internals of KALIMER(Korea Advanced Liquid MEtal Reactor) are carried out by using the elastic analysis method in the RCC-MR code for normal operating conditions including the thermal load, seismic load (OBE) and dead weight. The maximum operating temperature of this reactor is 53$0^{\circ}C$ and the total service lifetime is 30 years. Thus, the time- dependent creep and stress-rupture effects become quite important in the structural design. The effects of the thermal induced membrane stress on the creep-fatigue damage are investigated with the risk of the elastic follow-up. To calculate the thermal stress, detailed thermal analyses considering conduction, convection and radiation heat transfer mechanisms are carried out with the ANSYS program. Using the results of the elastic analysis, the progressive deformation and creep-fatigue damages are calculated step by step using the RCC-MR in detail. This paper ill be a very useful guide for an actual application of the high temperature structural design of the nuclear power plant accounting for the time-dependent creep and stress-rupture effects.

  • PDF

High Temperature Creep Strength of Mg-Nd-Zr-Zn Alloy in Sand Castings (사형주조한 Mg-Nd-Zr-Zn합금의 고온 크리이프강도)

  • Kang, Dae-Min;Park, Kyung-Do;Park, Ji-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.83-88
    • /
    • 2011
  • Magnesium alloys have been focussed for the applications for lightweight of vehicle and electronics due to their high strength, low specific density and good damping capacity. This paper deals with the creep strength of Mg-Nd-Zr-Zn alloy. For the alloy, pure magnesium(99.9%) was melt with atmosphere of $0.3%SF_6$ and $25%CO_2$. After melting, 0.3% of zinc was inserted to stir for 10min at elevated temperature of $770^{\circ}C$. Master alloys of Mg-15%Nd and Mg-15%Zr were stirred in furnace. The creep tests were performed to obtain creep rate and rupture in the temperature range of 200 to $220^{\circ}C$ and 280 to $310^{\circ}C$ at an applied stress of 156 to 172MPa and 78 to 94MPa, respectively. The deformation mechanism was predicted dislocation climb from measured apparent activation energy and stress exponent. Also the increaser the temperature and stress the lower the stress exponent and activation energy. Finally, LMP parameter gives good information for the predicted creep rupture life.

A study on the creep mechanism of Al 7075 alloy (Al 7075 합금 의 크리이프 변형 기구 에 관한 연구)

  • 백남주;강대민;백성관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.395-402
    • /
    • 1985
  • The apparent activation energy Q$_{c}$ and the applied stress exponent n have been determined during creep of Al 7075 alloy over the temperature range of 90.deg. C to 320.deg. C (0.4-0.65T$_{m}$) and stress range of 1.85 kgf/mm$^{2}$ to 21 kgf/mm$^{2}$, respectively in order to investigate the creep behavior. Constant load creep tests were carried out in the experiment. At round the temperature of 200.deg. C-240.deg. C and under the stress level 8.13-9.55kgf/mm$^{2}$ and again at around the temperature of 280.deg. C-320.deg. C and under the stress level of 1.85-2.55kgf/mm$^{2}$, the creep behavior obeyed for the creep deformation was nearly equal to that of the volume self diffusion of pure aluminum (34kcal/mole). But at around the temperature of 90.deg. C and under the stress level of 10-21kgf/mm$^{2}$, the creep behavior did not obey a simple power-law relation and the apparent activation enrgy, Q$_{c}$ was 26.01 kcal/mole. From the above facts, at around the temperature of 200.deg. C-240.deg. C and 280.deg. C-320.deg. C, the creep deformation for Al 7075 alloy seemed to be controlled by dislocation climb but at 90.deg. C, by cross slip over the range of experimental stress conditions.tions.

The Characteristics of Creep for Dispersion Strengthened Copper (분산강화 동합금의 Creep 특성)

  • Park, K.C.;Kim, G.H.;Mun, J.Y.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.220-227
    • /
    • 2001
  • The static creep behaviors of dispersion strengthened copper GlidCop were investigated over the temperature range of $650{\sim}690^{\circ}C$ (0.7Tm) and the stress range of 40~55 MPa (4.077~5.61 $kg/mm^2$). The stress exponents for the static creep deformation of this alloy was 8.42, 9.01, 9.25, 9.66 at the temperature of 690, 677, 663, and $650^{\circ}C$, respectively. The stress exponent, (n) increased with decreasing the temperature and became dose to 10. The apparent activation energy for the static creep deformation, (Q) was 374.79, 368.06, 361.83, and 357.61 kg/mole for the stress of 40, 45, 50, and 55 MPa, respectively. The activation energy (Q) decreased with increasing the stress and was higher than that of self diffusion of Cu in the dispersion strengthened copper. In results, it can be concluded that the static creep deformation for dispersion strengthened copper was controlled by the dislocation climb over the ranges of the experimental conditions. Larson-Miller parameter (P) for the crept specimens for dispersion strengthened copper under the static creep conditions was obtained as P=(T+460)(logtr+23). The failure plane observed for SEM slightly showed up transgranular at that experimental range, however, universally it was dominated by characteristic of the intergranular fracture.

  • PDF

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

A Study on the Creep-Fracture Behavior under High Temperature (고온상태에서의 크리이프 파단거동에 관한 연구)

  • Kang, Dae-Min;Gu, Yang;Baek, Nam-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 1986
  • Modern technological progress demands the use of materials at high temperature and high pressure. One of the most critical factors in considering such applications-perhaps the most critical one-is creep behavior. In this study the activation energy for the creep rupture (Qf) and the stress dependence of rupture time (n') have been determined during creep of Al 7075 alloy eve, the temporature range of $200^{\circ}C to 500^{\circ}C$ and stress range of 0.64 kgf/$\textrm{mm}^2$ to 9.55 kgf/$\textrm{mm}^2$, respectively, in order to investigate the creep-rupture property. Constant load creep tests were carried out in the enperiment At around the temperature $210^{\circ}C~390^{\circ}C$ and the stress level 1.53~9.55(kgf/$\textrm{mm}^2$), the stress dependence of rupture time(n') had the value of 6.6~6.78 but at 50$0^{\circ}C$, the value of 1.3. Besides at around the temperature of $200^{\circ}C~500^{\circ}C$ and under the stress level of 0.89~8.51 (kgf/$\textrm{mm}^2$), the activation energy for the creepprupture (Qf) was nearly equal to that of the volume self diffusion of pure aluminum (34Kca1/mo1e)

  • PDF

Elevated Temperature Design of KALIMER Reactor Internals Accounting for Creep and Stress-Rupture Effects

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.566-594
    • /
    • 2000
  • In most LMFBR(Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER(Korea Advanced Liquid MEtal Reactor) reactor internal strictures is carried out for normal operating conditions which have the operating temperature 53$0^{\circ}C$ and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME Code Case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects.

  • PDF