• Title/Summary/Keyword: Creep Function

Search Result 120, Processing Time 0.178 seconds

Behavior of Composite Steel Bridges According to the Concrete Slab Casting Sequences (바닥판 콘크리트 타설순서에 따른 합성형교량의 거동해석)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.233-251
    • /
    • 1998
  • This paper deals with the prediction of behavior of composite girder bridges according to the placing sequences of concrete deck. Based on a degenerate kernel of compliance function in the form of Dirichlet series, the time-dependent behaviors of bridges are simulated, and the layer approach is adopted to determine the equilibrium condition in a section. The variation of bending moments along the bridge length caused by the slab casting sequence is reviewed and correlation studies between section types and placing sequences are conducted with the objective to establish the validity of the continuous placing of concrete deck on the closed steel box-girder which is broadly used in practice.

  • PDF

Redistribution of Vacancy Concentration in Metal Specimens under Stress-induced Diffusion at a High Temperature (고온 환경하 응력 확산에 의한 금속시편내 격자결함 재분포)

  • Yoon, Seon-Jhin;Cho, Yong-Moo
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, we calculated the redistribution of vacancy concentration in metal specimens induced by stress-induced diffusion at a high temperature. To deduce the governing equation, we associated the unit volume change equation of strains with a differential equation of vacancy concentration as a function of stress using the stress-strain relationship. In this governing equation, we considered stress as the only chemical potential parameter to stay in the scope of this study, which provided the vacancy concentration equation as of stress gradient in metals. The equation was then mathematically delineated to derive a analytical solution for a transient, one-dimensional diffusion case. With the help of Korhonen's approximation and the boundary conditions, we successfully deduced a general solution from the governing equation. To visualize the feasibility of our solutions, we applied the solution to two different stress-induced cases - a rod with fixed concentrated stresses at both ends and a rod with varying concentrated stresses at both ends. Although it is necessary to legitimatized the model in the future for improvement, our results showed that the model can be used to interpret the location of structural defects, the formation of vacancy, and furthermore the high temperature behavior of metals.

Numerical Simulation for Pressing Process of Hot glass (고온 유리의 프레스 성형 공정 시뮬레이션)

  • Ji Suk Man;Choi Joo Ho;Kim Jun Bum;Ha Duk Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.205-213
    • /
    • 2005
  • This paper addresses a method for numerical simulation in the pressing process of hot glass. Updated Lagrangian finite element formulations are employed for the flow and energy equations to accommodate moving meshes. The model is assumed axi-symmetric and creep flow is assumed due to the high viscosity. Commercial software ANSYS is used to solve the coupled flow and energy equations. Moving contact points as well as free surface during the pressing are effectively calculated and updated by utilizing API functions of CAD software Unigraphics. The mesh distortion problem near the wall is overcome by automatic remeshing, and the temperatures of the new mesh are conveniently interpolated by using a unique function of ANSYS. The developed model is applied to the pressing process of TV glasses. In conclusion, the presented method shows that the pressing process accompanying moving boundary can be simulated by effectively combining general purpose software without resorting to special dedicated codes.

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

Analysis of Static Crack Growth in Asphalt Concrete using the Extended Finite Element Method (확장유한요소법을 이용한 아스팔트의 정적균열 성장 분석)

  • Zi, Goangseup;Yu, Sungmun;Thanh, Chau-Dinh;Mun, Sungho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.387-393
    • /
    • 2010
  • This paper studies static crack growth of asphalt pavement using the extended finite element method (XFEM). To consider nonlinear characteristics of asphalt concrete, a viscoelastic constitutive equation using the Maxwell chain is used. And a linear cohesive crack model is used to regularize the crack. Instead of constructing the viscoelastic constitutive law from the Prony approximation of compliance and retardation time measured experimentally, we use a smooth log-power function which optimally fits experimental data and is infinitely differentiable. The partial moduli of the Maxwell chain from the log-power function make analysis easy because they change more smoothly in a more stable way than the ordinary method such as the least square method. Using the developed method, we can simulates the static crack growth test results satisfactorily.

Mechanical and Thermal Analysis of Oxide Fuel Rods

  • Ilsoon Hwang;Lee, Byungho;Lee, Changkun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.223-236
    • /
    • 1977
  • An integral computer code has been developed for a mechanical and thermal design and performance analysis of an oxide fuel rod in a pressurized water reactor. The code designated as FROD 1.0 takes into account the phenomena of radial power depression within the pellet, cracking, densification and swelling of the pellet, fission gas release, clad creep, pellet-clad contact, heat transfer to coolant and buildup of corrosion layers on the clad surface. The FROD 1.0 code yields two-dimensional temperature distributions, dimensional changes, stresses, and internal pressure of a fuel rod as a function of irradiation time within a reasonable computation time. The code may also be used for the analyses of oxide fuel rods in other thermal reactors. As an application of FROD 1.0 the behavior of fuel rod loaded in the first core of Go-ri Nuclear Power Plant Unit 1 is predicted for the two power histories corresponding to steady state operation and Codition II of the ANS Classification. The results are compared with the design criteria described in the Final Safety Analysis Report and a discrepancy between these two values is discussed herein.

  • PDF

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

Time-Dependent Behavior Analysis of Pre-Tensioned Members Using High-Performance Concrete(HPC) (고성능 콘크리트(HPC)를 사용한 프리텐션 부재의 시간의존거동 해석)

  • Nam, Yoo-Seok;Cho, Chang-Geun;Park, Moon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.479-487
    • /
    • 2006
  • This paper deals with a research about the time-dependent behavior analysis for pre-tensioned high-performance concrete(HPC) members. By improving AASHTO-LRFD(2004) method for predicting the creep and shrinkage of normal concrete, and the relaxation of prestressing tendon, a time-dependent behavior analysis of high-performance concrete structures has been introduced. Two methods, the step-function method and the time-step method have been incorporated in the time-dependent analysis. The developed program can predict the initial and time-dependent losses of prestressing forces and the deflections of high-performance concrete structures. The present model has been verified by comparing with the experimental results from the test of time-dependent behaviors of pre-tensioned members using high-performance concrete. From this, the current model gives good relations with the experimental results, but the AASHTO method is not good for the prediction of time-dependent behaviors of high-performance concrete members.

Development of A Methodology for In-Reactor Fuel Rod Supporting Condition Prediction (노내 연료봉 지지조건 예측 방법론 개발)

  • Kim, K. T.;Kim, H. K.;K. H. Yoon
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 1996
  • The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by residual spacer grid spring deflection or rod-to-grid gap. In order to evaluate the impact of fuel design parameters on the fretting wear-induced damage, a simulation methodology of the in-reactor fuel rod supporting conditions as a function of burnup has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key fuel design parameters affecting the in-reactor fuel rod supporting conditions. Based on the parametric studies on these key parameters, it is found that the initial spring deflection, the spring force relaxation rate and cladding creepdown rate are in the order of the impact on the in-reactor fuel rod supporting conditions. Application of this simulation methodology to the fretting wear-induced failure experienced in a commercial plant indicates that this methodology can be utilized as an effective tool in evaluating the capability of newly developed cladding materials and/or new spacer grid designs against the fretting wear-induced damage.

  • PDF

Research for The Environmental Optimization of Dose and Image quality in Digital Radiography (디지털 방사선촬영 환경에서 선량의 최적화 및 영상품질에 대한 연구)

  • Lee, Kwang Jae;Kim, MinGi;Lee, Jong Woong;Kim, Ho Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.203-209
    • /
    • 2013
  • Digital Radiography (DR) has improved a quality of resolution based on a wide dynamic range, high detective quantum efficiency (DQE), and modulation transfer function (MTF), compared with film/screen(F/s). Unlike expectation that a low level of radiation can be used in examination, high level of signal to noise ratio(SNR) due to over-exposure caused increase of exposed dose to patients. Also, the auto exposure control (AEC) using Kilovolage(kVp) in F/S can cause over-exposure. Hence, in this study, we proposed a proper method for using DR, in which effect of tubing Kilovolage on device's image, DR MTF measurement with changes of tubing current (mA), and the quantitative evaluation of skull phantom captured images' PSNR were evaluated. Changes of contrast with tubing Kilovolage can be improved by retouching, and MTF changes according to tubing current(1.41~1.39 lp/mm in 50% area, and 3.19~2.8 lp/mm in 10% area) does not influence on resolution of image. As a result, high tubing Kilovoltage, and tubing current will be suitable to use of DR.