• Title/Summary/Keyword: Creative problem-solving

Search Result 747, Processing Time 0.023 seconds

Development and Application of Teaching Strategy Focused on Problem Solving Process in the 'Separation of Mixture' Unit of Third Grade Elementary School (초등학교 3학년 '혼합물의 분리' 단원에서 문제해결 과정을 강조한 수업 전략 개발 및 적용)

  • Lee, Shin Hyun;Choi, Sun-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The purpose of this study was to develop a teaching strategy focused on problem solving process and explore its effects on science creative problem solving ability, science process skills, science academic achievements and scientific attitudes of students after applying it. Teaching strategy focused on problem solving process employed brainstorming and PMI thinking strategies. The participants were the third grade students of both an experimental class(26 students) and a comparative class(25 students) at the S elementary school located in Goyang-City, Kyonggi Province. The developed strategy was applied to the experimental class for 9 periods of 'Separation of mixture' unit. The results of the tests on the science creative problem solving ability, the science process skills, scientific achievement and scientific attitude were statistically higher in the experimental class.

Analysis of the Effectiveness of Liberal SW Education focused on Developing Computational Thinking and Creative Problem Solving Ability (컴퓨팅사고력, 창의적 문제해결력 신장을 위한 대학 교양 SW 기초 교육의 효과 분석)

  • Jiyae Noh
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.123-135
    • /
    • 2023
  • In liberal SW education, nurturing student with creative problem-solving ability based on SW is considered important. The purpose of this study is to design SW education and to investigate the effects on students' computational thinking and creative problem solving abilities. This study designed classes in accordance with convergent project and the CT-CPS model and 38 undergraduate students have participated this study. The questionnaire survey was given to students and analyzed the effectiveness of class. The results of this study were as follows: Fitst, SW education significantly improved computational thinking and creative problem solving ability. Second, computational thinking improve significantly in high and low initial score group and creative problem solving improve significantly in low initial score group. However, creative problem solving ability did not improve significantly in high initial score group. Third, computational thinking improve significantly in all majors and creative problem solving improve significantly in college of natural science. However, creative problem solving ability did not improve significantly in college of humanities and social science. In examining the effects on students' computational thinking and creative problem-solving abilities and verify differences by pre-test and major, this study provides significance in expanding the understanding about the nature liberal SW education.

An Study on Creative Problem Solving Experiences in Engineering Production Design Class Using Design Thinking (디자인씽킹을 활용한 공학제품 설계수업에서의 창의적 문제해결 경험 연구)

  • Ryoo, Eunjin;Kim, Minjeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.223-233
    • /
    • 2021
  • This study is was conducted for 37 first-year students (including 27 males and 10 females) enrolled in the engineering product design class opened as a regular class in the second semester of 2018 at 'A' University in Seoul to examine creative problem solving experiences in class using design_thinking. In this study, creative problem-solving ability was divided into creative personality and problem-solving ability and in the results of examining the difference in pre- and post-creative problem solving abilities through Hotelling's T-square test and t-test, among the creative personality, the tolerance & passion, humor, curiosity, and progressive attitude were found to significantly increase after class. Next, in the results of examining the process of creative problem solving through the reflection journal, in the empathy and prototyping and testing stages of design thinking, more activities for problem solving appeared, and at the stage of problem definition and idea generation, it can be seen that more activities expressing creative personality appear. The results of this study show that creative problem-solving abilities can be improved through design thinking, suggesting that instructional support for effective design thinking should be designed.

An Analysis of Structural Relationships between Metacognition, Flow, and Mathematics Creative Problem Solving Ability (메타인지, 몰입과 수학 창의적 문제해결력 간의 구조적 관계 분석)

  • Park, Hye-Jin;Kwean, Hyuk-Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.2
    • /
    • pp.205-224
    • /
    • 2010
  • This paper examined what structural relationship metacognition and flow, which are identified as major variables that positively influence creative problem solving ability, had with mathematics creative problem solving ability. For this purpose, the Mathematics Creative Problem Solving Ability Test (MCPSAT) was given go 196 general second-year middle school students, and their cognitive and affective states were measured with metacognition and flow tests. The three variables' relationships were examined through a correlation analysis and, through structural equation modeling, the mediating effect of flow was tested in the structural relationships between the three variables and in the relationship between metacognition and mathematics creative problem solving ability. The results of the research show that metacognition did not directly influence mathematics creative solving ability, but exerted influence through the mediating variable of flow. A more detailed examination shows that while metacognition did not influence fluency and originality from among the measured variables for mathematics creative problem solving ability, it did directly influence flexibility. In particular, metacognition's indirect influence through the mediating variable of flow was shown to be much stronger than its direct influence on flexibility. This research showed that the students' high metacognition ability increased flow degree in the problem solving process, and problem solving in this state of flow increased their mathematics creative problem solving ability.

  • PDF

The Effect of Scientific Discussion Classes Focusing Problem Finding on the Primary School Students' Scientific Creative Problem Solving Ability and Science Process Skills (문제발견 중심의 과학토론수업이 초등학생들의 과학 창의적 문제해결력과 과학탐구능력에 미치는 영향)

  • Kim, Soon-Shik;Lee, Yong-Seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.1
    • /
    • pp.133-143
    • /
    • 2014
  • The purpose of this study was to examine the effect of scientific discussion classes focusing problem finding on the primary school students' scientific creative problem solving ability, science process skills and attitude toward science class. To verify this research problem, the subject of this study was fifth-grade students selected from four classes of M elementary school located in Busan city. For four months, the experimental group of 51 students was taught using the "scientific discussion classes focusing problem finding". The control group also of 53 students was taught in normal classes which used a text-book. All students were given pre and post test to verify the effects of scientific discussion classes focusing problem finding on the primary school students' scientific creative problem solving ability, science process skills and attitude toward science class. The results from this study are as the following. First, the scientific discussion classes focusing problem finding were effective in scientific creative problem solving ability among the primary school students. It is possibly because in the process where one student compare his/her own thoughts with the others' ones and discuss them. Second, the scientific discussion classes focusing problem finding were effective in science process skills among the primary school students. Third, the scientific discussion classes focusing problem finding were effective in attitude toward science class. In conclusion, the scientific discussion classes focusing problem finding had positive effects on improvement of primary school students' scientific creative problem solving ability, science process skills and also could lead to a change in students' cognition about science class to a positive way. Therefore, the scientific discussion class focusing problem finding is hopefully to be provided as an effective instructive strategy of science class in school in the future.

Effects of Gifted Students' Creative Problem Solving Ability by Team-Based Learning (팀기반학습이 영재학생의 창의적 문제해결력에 미치는 영향)

  • Jin, Young-Hun;Son, Jeong-Woo
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.3
    • /
    • pp.703-718
    • /
    • 2011
  • Team-Based Learning can play an important role in gifted education, because that improve decision making, coordination and problem-solving ability through shapely team activity. So, when a program that founded on Team-Based Learning applied to gifted students, investigated the improved effects of creative problem solving ability. Developed programs consisted of total 10 times and were conducted the lesson for 13student (male 3, female 10) of 4, 5th grade gifted students class in S elementary school, Sancheong-gun. The improved effects of creative problem solving ability were selected as the self-checking tool of creative problem-solving ability. Due to a small number of students, nonparametric test has done with the results of before and after, it showed significantly improvements in significance level of 5%. In particular, there was a significant improvement in the field of divergent thinking, critical logical thinking. Therefore, the programs based on Team-Based Learning are effective for enhance creative problem solving ability of gifted students, they will be used widely in the classroom to require creative problem solving ability or the acquisition of knowledge of gifted students.

Effect of Learning a Divide-and-conquer Algorithm on Creative Problem Solving (분할 정복 알고리즘 학습이 창의적 문제 해결에 미치는 효과)

  • Kim, Yoon Young;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.2
    • /
    • pp.9-18
    • /
    • 2013
  • In secondary education, learning a computer science subject has the purpose to improve creative problem solving ability of students by learning computational thinking and principles. In particular, learning algorithm has been emphasized for this purpose. There are studies that learning algorithm has the effect of creative problem solving based on the leading studies that learning algorithm has the effect of problem solving. However, relatively the importance of the learning algorithm can weaken, because these studies depend on creative problem solving model or special contents for creativity. So this study proves that learning algorithm has the effect of creative problem solving in the view that common problem solving and creative problem solving have the same process. For this, analogical reasoning was selected among common thinking skills and divide-and-conquer algorithm was selected among abstractive principles for analogical reasoning in sorting algorithm. The frequency which solves the search problem by using the binary search algorithm was higher than the control group learning only sequence of sorting algorithm about the experimental group learning divide-and-conquer algorithm. This result means that learning algorithm including abstractive principle like divide-and-conquer has the effect of creative problem solving by analogical reasoning.

  • PDF

Analysis of Undergraduates' Creative Problem Solving with or without IT Convergence Education (IT 융합 교육 유무에 따른 대학생의 창의적 문제 해결 역량 분석)

  • Kim, Sungae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.372-374
    • /
    • 2019
  • Recent college education in the face of the Fourth Industrial Revolution highlights problem-solving skills or creativity over the passing of professional knowledge. In addition, the need for convergence education is growing further as high-tech information and communication technologies are converging to create innovative changes. In this study, after IT convergence education was conducted and after general convergence education was conducted, the difference in creative problem solving capabilities was compared and analyzed. The study found that students who received IT convergence education had higher creative problem solving capabilities than general convergence education, and showed a statistically significant difference. In order to foster creative problem-solving skills, universities will need to promote IT convergence education in various courses.

  • PDF

Application of TRIZ(Theory of Inventive Problem Solving) to Creative Knowledge Management (트리즈 (러시아의 창의적 문제해결 이론)의 창의적 지식경영에서의 응용)

  • Lee, Kyeong-Won;Lee, Yong-Kyu
    • Knowledge Management Research
    • /
    • v.4 no.1
    • /
    • pp.81-94
    • /
    • 2003
  • The Russian theory of inventive problem solving method in Engineering, TRIZ is introduced to the non Engineering field these days. In this paper, the applications of TRIZ to creative knowledge management for knowledge creation are reviewed. This paper shows some examples on the systematic win-win problem solving in business environments using TRIZ methodology and comments the possibility of TRIZ in conceptual creative business innovation in future.

  • PDF

Cognitive Components Definition of Creative Problem-Solving Ability in Informatics Education (정보 교육에서 요구되는 창의적 문제해결능력의 인지적 요소 정의)

  • Kim, JongHye;Jeong, HoiGang;Kim, HanSung;Kim, HyeonCheol;Lee, WonGyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.2
    • /
    • pp.1-12
    • /
    • 2008
  • It is important to improve the creative problem- solving ability through subject matter education. Especially, Informatics education is important to improve the problem-solving ability by using computer as well as the general problem-solving ability. This paper identifies the creative problem- solving ability which is required in Informatics education. The cognitive components of the creative problem-solving ability are organized as the result of crossing the problem-solving ability and the creativity. This paper investigated the validity of the contents as judged by a panel of experts. The cognitive components of creativity are the elaboration, sensitivity, and reorganization in the step of 'Understanding and Analysis the Problem'. Also, The cognitive components of creativity are the fluency, flexibility, and originality in the step of the 'Exploring the Problem Solutions'. The cognitive components of creativity are elaboration in the step of the 'Design the Problem Solution' and 'Implementation'. Finally, the cognitive components of creativity are the flexibility and elaboration in the step of the 'Evaluation'.

  • PDF