• Title/Summary/Keyword: Crashworthiness analysis

Search Result 142, Processing Time 0.019 seconds

A Study on Side Impact Simulation Technique using Simple Beam Model (단순 보모델을 이용한 측면충돌 해석기술 연구)

  • 강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.170-177
    • /
    • 1997
  • In this study, an analysis technique using simple beam model for predicting structure crashworthiness of the passenger car side impacted with an angle by another passenger car was investigated. The simple model was composed of major beam-like side structure which carry almost all side impact load. A procedure of component collapse test, calculation of load carrying capability and dynamic simulation was carryed out sequentially. Transient dynamic algorithms and a computer program to simulate deformations and motions of the impacted car was developed. The developed procedure was applied to a 3 door passenger car side impacted with an angle of 75 degree and the analysis results show good agreements with the actual test results.

  • PDF

Crashworthiness analysis on existing RC parapets rehabilitated with UHPCC

  • Qiu, Jinkai;Wu, Xiang-guo;Hu, Qiong
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2017
  • In recent year, the coat layer drops and the rebar rust of bridge parapets, which caused the structural performance degradation. In order to achieve the comprehensive rehabilitation, ultra high performance cementitious composites is proposed to existing RC parapet rehabilitation. The influence factors of UHPCC rehabilitation includes two parts, i.e., internal factors related with material, such as UHPCC layer thickness, corrosion ratio of rebars, fiber volume fraction, and external factors related with the load, such as impact speeds, impact angles, vehicle mass. The influence of the factors was analyzed in this paper based on the nonlinear finite element. The analysis results of the maximum dynamic deformation and the peak impact load of parapets revealed the influence of the internal factors and the external factors on anti-collision performance and degree degradation. This research may provide a reference for the comprehensive multifunctional rehabilitation of existing bridge parapets.

Vehicle Dynamic Analysis Using Virtual Proving Ground Approach

  • Min, Han-Ki;Park, Gi-Seob;Jung, Jong-An;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.958-965
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness (NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer In this study, we used the virtual proving ground (VPG) approach for obtaining the dynamic characteristics. The VPG approach uses a nonlinear dynamic finite element code (LS-DYNA3D) which expands the application boundary outside the classic linear static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental results, and the feasibility of the integrated CAE analysis methodology was verified.

FOA (first-order-analysis) model of an expandable lattice structure for vehicle crash energy absorption of an inflatable morphing body

  • Lee, Dong-Wook;Ma, Zheng-Dong;Kikuchi, Noboru
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.617-632
    • /
    • 2011
  • A concept of crash energy absorbing (CEA) lattice structure for an inflatable morphing vehicle body (Lee et al. 2008) has been investigated as a method of providing rigidity and energy absorption capability during a vehicular collision (Lee et al. 2007). A modified analytical model for the CEA lattice structure design is described in this paper. The modification of the analytic model was made with a stiffness approach for the elastic region and updated plastic limit analysis with a pure plastic bending deformation concept and amended elongation factors for the plastic region. The proposed CEA structure is composed of a morphing lattice structure with movable thin-walled members for morphing purposes, members that will be locked in designated positions either before or during the crash. What will be described here is how to model the CEA structure analytically based on the energy absorbed by the CEA structure.

Accelerated Durability Analysis of Suspension System (Suspension System의 가속내구해석)

  • 민한기;정종안;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

The study on the buckling instability of tube type crash energy absorber (튜브형 충돌에너지흡수부재의 좌굴불안전성에 대한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1564-1570
    • /
    • 2007
  • There are normally two types of the energy absorbers used in the crashworthiness of trains. The first is a structure type, which mainly used in not only the primary structures of the train but also the crash energy absorbers at the accident. The second is a module type, which just absorbs the crash energy independent of the primary structures and attached to the structures of the train. The expansion and inversion tube are widely used as the module type crash energy absorbers, especially in the train. The tubes should not be buckled under the load acting on the end of the tube in longitudinal direction during absorbing the crash energy. The buckling stability of the tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the tubes on the buckling load are studied by using the ABAQUS, a commercial finite element analysis program, and then presents the guideline to design the tube. The analysis processes to compute the buckling load consist of a linear buckling analysis and a nonlinear post-buckling analysis. The buckling modes are evaluated by the linear buckling analysis, as using these modes, the buckling loads are computed by the nonlinear post-buckling analysis.

  • PDF

An Estimative Model of Spot Weld Failure-1. Failure Criteria (점 용접점 파단의 정량적 모델-1. 파단조건식)

  • Lee, T.S.;Lee, H.Y.;Shin, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.40-52
    • /
    • 1998
  • A good grasp of the failure mechanisms of resistance spot weld, widely used in joining the auto-panels, in essential to the structural/crashworthy analyses and integrity assessment of the whole auto-body. In this study, We provide an estimative model describing the failure behavior of resistance spotf weld, and apply the model to the finite element analysis of crashworthiness. First, in "Part 1-Failure Criteria", to be used for the finite element analysis of spot-welded structural panels of an auto-body, (i) a methodology for quantifying the spot weld failure and the accompanying failure criteria are presented, and (ii) the coefficients of the failure equation are determined by a munimum number of appropriate experimental tests. To achieve these, we derive the functional form of the failure envelop by limit analysis, and correlate it with the form in PAM-$CRASH^{TM}$ code, and also investigate the effect of the failure coefficients on the failure envelop form. An estimative model obtained in this Part1, as spot weld failure criteria is applied to the Macroscopic finite element analysis of autobody structural panels using PAM-$CRASH^{TM}$ code in Part 2.

  • PDF

EVALUATION OF THE FINITE ELEMENT MODELING OF A SPOT WELDED REGION FOR CRASH ANALYSIS

  • Song, J.H.;Huh, H.;Kim, H.G.;Park, S.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. At first, the load on the spot-welded region is calculated with the precise finite element model considering the residual stress due to the thermal history during the spot welding procedure. And then, the load is compared with the one obtained from the model used in the crash analysis with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

Side Impact Analysis of an Auto-body with 60TRIP Steel for Side Members (60TRIP강을 적용한 차체의 측면충돌 해석)

  • Lim, Ji-Ho;Kim, Kee-Poong;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.164-171
    • /
    • 2003
  • The side impact behavior has been investigated when the high strength steel 60TRIP(Transformation Induced Plasticity) is replaced for the conventional low-carbon steel for weight reduction of an auto-body. The side impact analysis was carried out as specified in US-SINCAP with the center pillar and the side sill of the conventional steel or 60TRIP. For accurate impact analyses, the dynamic material properties are adopted with the Johnson-Cook model. The analysis results demonstrate that the penetration of the side members is remarkably reduced when 60TRIP is employed for the center pillar and the side sill replacing the conventional steel. The crashworthiness in the side impact is considerably improved with less penetration of the side members and less acceleration of the opposite floor.