• 제목/요약/키워드: Crash forming

검색결과 32건 처리시간 0.023초

Steel processing effects on crash performance of vehicle safety related applications

  • Doruk, Emre
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.351-358
    • /
    • 2017
  • Due to the increasing competition, automotive manufacturers have to manufacture highly safe and light vehicles. The parts which make up the body of the vehicle and absorb the energy in case of a crash, are usually manufactured with sheet metal forming methods such as deep drawing, bending, trimming and spinning. The part may get thinner, thicker, folded, teared, wrinkled and spring back based on the manufacturing conditions during manufacturing and the type of application methods. Transferring these effects which originate from the forming process to the crash simulations that are performed for vehicle safety simulations, makes accurate and reliable results possible. As a part of this study, firstly, the one-step and incremental sheet metal forming analysis (deep drawing + trimming + spring back) of vehicle front bumper beam and crash boxes were conducted. Then, crash performances for cases with and without the effects of sheet metal forming were assessed in the crash analysis of vehicle front bumper beam and crash box. It was detected that the parts absorbed 12.89% more energy in total in cases where the effect of the forming process was included. It was revealed that forming history has a significant effect on the crash performance of the vehicle parts.

등가 드로오비드를 적용한 Front Side Member의 성형 해석 밑 충돌 해석에의 적용 (Forming Analysis of the Front Side Member with Equivalent Draw-bead and Application to Crash Analysis)

  • 송정한;김기풍;김승호;허훈;김현섭;홍석길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.266-269
    • /
    • 2003
  • This paper is concerned with a forming analysis of front side members and the application of the forming effect in crash analysis of auto-body. Drawbead restraining forces are calculated with ABAQUS/Strandard in order to identify the boundary condition in forming process. Forming analysis with equivalent drawbead is carried out with LS-DYNA3D. In order to demonstrate the validity of the forming analysis, quantitative comparison of the thickness variation between the real product and the numerical simulation result is carried out. Forming histories obtained from the forming analysis are utilized as the initial condition of the crash analysis for accurate assessment of the crashworthiness.

  • PDF

차량충돌해석 적용을 위한 간단화한 성형이력 고려 방법 (A Simplified Method to Consider Forming Effects in a Car Crash Analysis)

  • 허지향;윤종헌;임지호;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.259-262
    • /
    • 2008
  • This paper introduces a simplified method to consider forming effects in a car crash analysis. Representative value was used to consider forming effects simply. Four representative values, which are the mean value of thicknesses and effective plastic strains at nodes, the median of thicknesses and effective plastic strains at nodes, were evaluated. A crash analysis of a front side member shows that analysis results from the suggested methods are similar to those from the conventional method to consider forming effects. Use of the mean effective plastic strain shows the best results. A car crash analysis for a ULSAB/AVC model under the condition of US SINCAP were carried out to demonstrate the validity of the suggested method. Analysis results show that the error of suggested method is less than 1.5%.

  • PDF

직접격자 사상법을 이용한 차체 구조물의 유한요소 역해석 및 성형효과를 고려한 충돌해석 (Inverse Finite Element Analysis of Autobody Structures with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effets)

  • 김승호;허훈
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.457-464
    • /
    • 2002
  • A finite element inverse analysis is utilized to consider forming effects of an S-rail on the assessment of the crashworthiness with small amount of computation time. A crash analysis can be directly performed after the inverse simulation of a forming process without a smoothing or remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from a sliding constraint surface that is extracted from the die and punch set. Analysis results demonstrate that energy absorption of structures is increased when simulation considers forming effects of thickness variation and work hardening. The finite element inverse analysis is proved to be an effective tool in consideration of forming effects for the crash analysis.

이상공정이론 및 하이브리드 박막/쉘 방법을 이용한 박판성형품의 충돌거동 해석 (Incorporation of Sheet Forming Effects in Crash Simulations Using Ideal Forming Theory and Hybrid Membrane/shell Method)

  • 류한선;정관수;윤정환;한정석;윤재륜;강태진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.148-151
    • /
    • 2003
  • In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet forming process effects were incorporated in simulations using the ideal forming theory mixed with the 3D hybrid membrane/shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost-effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet forming effects to crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the non-quadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6114-T4 aluminum alloy sheets.

  • PDF

등가 드로오비드를 적용한 Front Side Member의 성형해석 및 충돌평가 (Forming Analysis of the Front Side Member using Equivalent Draw-bead for Crashworthness Assessment)

  • 송정한;김기풍;김승호;허훈;김현섭;홍석길
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.320-327
    • /
    • 2003
  • This paper is concerned with forming analysis of Front Side Members and effects of the forming analysis on crash analysis of an auto-body. For efficient forming analysis, equivalent draw-bead restraining forces are calculated with ABAQUS/Standard and then used as the boundary condition in forming simulation. In order to demonstrate the validity of the forming analysis, the thickness variation in the numerical simulation result is compared quantitatively with the one in the real product. Forming histories obtained kom the forming analysis are utilized as the initial condition of the crash analysis for accurate assessment of the crashworthiness. Crashworthiness such as the load-carrying capacity, crash mode and the energy absorption is evaluated and investigated for the identification of forming effects.

직접격자 사상법을 이용한 S-rail 성형공정의 유한요소 역해석 및 성형효과를 고려한 충돌해석 (Finite Element Inverse Analysis of an S-rail Forming Process with Direct Mesh Mapping Method and Crash Analysis considering Forming Effects)

  • 김승호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 2002
  • The automotive industry have made an effort to reduce the weight of vehicle structures with increased safety, while initial model of the final product does not contain any prehistoric effects in a design stave. It takes lots of time to calculate forming effects that have great influences on the energy absorption of structures. In this paper, finite element inverse analysis is adopted to calculate forming effects, such as thickness variation and effective plastic strain as well as an initial blank shape with small amount of computation time. Crash analysis can be directly performed after inverse analysis of the forming process without remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from the sliding constraint surface that is extracted from the die and punch set. Analysis results show that energy absorption of structures is increased with consideration of forming effects and finite element inverse analysis is usefully applicable to calculate forming erects of vehicle structures for the crash analysis.

  • PDF

성형 효과를 고려한 차체 구조 부재의 충돌 특성 (Crashworthiness of an Auto-body Member with the Forming Effect)

  • 김기풍;송정한;허훈;김현섭;홍석길
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.91-98
    • /
    • 2004
  • This paper is concerned with crash analysis for an auto-body member with the forming effect. Auto-body members such as a front frame assembly are fabricated with sheet metal forming processes that induce forming histories such as the plastic work hardening and non-uniform thickness distribution. Numerical simulation is carried out with LS-DYNA3D in order to identify the forming effect on the crashworthiness. The crash analysis of the front frame assembly with the forming effect leads to a different result from that without the forming effect. Crashworthiness such as the load-carrying capacity, the crash mode and the energy absorption are calculated to investigate and identify the forming effect. It is fully demonstrated that the design of auto-body members needs to consider the forming effect for accurate assessment of the load-carrying capacity and the deformation mechanism of the formed members.

용접부의 영향을 고려한 하이드로포밍된 자동차용 DP강관의 충돌 특성 평가 (Crash Performance Evaluation of Hydro-formed Automotive DP-Steel Tube Considering Welding Heat Effects)

  • 정경환;권혁선;박성호;노동성;정관수
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.568-573
    • /
    • 2006
  • In order to numerically evaluate automotive hydro-formed DP-steel tubes on crash performance considering welding heat effects, the finite element simulations of crash behavior were performed for hydro-formed tubes with and without heat treatment effects. This work involves the mechanical characterization of the base material and the HAG-welded zone as well as finite element simulations of the crash test of hydro-formed tubes with welded brackets and hydro-forming of tubes. The welding heat effects on the crash performance are evaluated in efforts to improve the process optimization procedure of the engine cradle in the design stage. In particular, FEM simulations on indentations have been performed and experimentally verified for material properties of weld zone and heat affected zone.

박판성형가공을 고려한 자동차 충돌해석 (Crash Analysis of the ULSAB-AVC Model with Considering Forming Effects)

  • 허훈;윤종헌;바오이동;김세호;박성호
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.556-561
    • /
    • 2006
  • Most of auto-body members are composed of stamping parts. These parts have the non-uniform thickness and plastic work hardening distribution during the forming process. This paper is concerned with the side impact analysis of the ULSAB-AVC model according to the US-SINCAP in order to compare the crashworthiness between the model with and without considering the forming effect. The forming effect is ca]ciliated by one-step forming analysis for several members. The crashworthiness is investigated by comparing the deformed shape of the cabin room the energy absorption characteristics and the intrusion velocity of a car. The result of the crash analysis demonstrates that the crash mode, the load-carrying capacity and energy absorption can be affected by the forming effect. It is noted that the design of an autobody should be carried out considering the forming effect for accurate assessment of crashworthiness.