• Title/Summary/Keyword: Crane systems

Search Result 246, Processing Time 0.027 seconds

Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting (망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.

Hydrodynamic interactions and coupled dynamics between a container ship and multiple mobile harbors

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.217-228
    • /
    • 2012
  • As the size of container ships continues to increase, not many existing harbors can host the super-container ship due to its increased draft and the corresponding dredging requires huge budget. In addition, the minimization of waiting and loading/offloading time is the most important factor in harbor competitiveness. In this regard, mobile-harbor concept has been developed in Korea to achieve much improved harbor capacity and efficiency. In developing the concept, one of the most important elements is the operability of crane between two or more floating bodies in side-by-side arrangement. The container ship is to be stationed through a hawser connection to an outside-harbor fixed-pile station with the depth allowing its large draft. The mobile harbors with smart cranes are berthed to the sides of its hull for loading/offloading containers and transportation. For successful operation, the relative motions between the two or more floating bodies with hawser/fender connections have to be within allowable range. Therefore, the reliable prediction of the relative motions of the multiple floating bodies with realistic mooring system is essential to find the best hull particulars, hawser/mooring/fender arrangement, and crane/docking-station design. Time-domain multi-hull-mooring coupled dynamic analysis program is used to assess the hydrodynamic interactions among the multiple floating bodies and the global performance of the system. Both collinear and non-collinear wind-wave-current environments are applied to the system. It is found that the non-collinear case can equally be functional in dynamics view compared to the collinear case but undesirable phenomena associated with vessel responses and hawser tensions can also happen at certain conditions, so more care needs to be taken.

Nonlinear control system using universal learning network with random search method of variable search length

  • Shao, Ning;Hirasawa, Kotaro;Ohbayashi, Masanao;Togo, Kazuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.235-238
    • /
    • 1996
  • In this paper, a new optimization method which is a kind of random searching is presented. The proposed method is called RasVal which is an abbreviation of Random Search Method with Variable Seaxch Length and it can search for a global minimum based on the probability density functions of searching, which can be modified using informations on success or failure of the past searching in order to execute intensified and diversified searching. By applying the proposed method to a nonlinear crane control system which can be controlled by the Universal Learning Network with radial basis function(R.B.P.), it has been proved that RasVal is superior in performance to the commonly used back propagation learning algorithm.

  • PDF

Autonomous Ground Vehicle Technologies Applied to the DARPA Grand Challenge

  • CraneIII, Carl D.;Armstrong Jr., David G.;Torrie, Mel W.;Gray, Sarah A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1126-1130
    • /
    • 2004
  • This paper describes the design, development, and performance testing of an autonomous ground vehicle that was developed to participate in the DARPA Grand Challenge that was held in March 2004. The authors of this paper are members of Team CIMAR which was one of twenty five teams selected by DARPA to participate in a competition to develop an autonomous vehicle that can navigate from near Los Angeles to near Las Vegas at speeds averaging twenty miles per hour. Most of the event was held on open terrain and trails in a rocky desert environment. This paper describes the overall system design and the performance of the system at the event.

  • PDF

Rotational position control of RCGLUD using input shaping algorithm (입력 다듬기를 이용한 사용후 핵연료 수송용기 취급장치의 회전 위치제어)

  • 김동기;박영수;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1060-1063
    • /
    • 1996
  • Remote Cask Grappling and Lid Unbolting Device (RCGLUD) is developed as a dedicated device capable of performing complete procedure of handling nuclear spent fuel transport cask. Since RCGLUD is suspended to an overhead crane, its body should undergo prolonged vibration upon actuation in rotational direction and it becomes difficult to achieve precise grappling of the cask. Therefore, this paper presents an adaptation of input shaping technique to effectively suppress the rotational vibration of RCGLUD and achieve precise positioning in rotational direction. This technique has a practical merit in that it requires only the information on the system natural frequency and the damping ratio. Its performance is verified by both simulation and experimental studies, and revealed that the method is also insensitive to modeling error.

  • PDF

Graphic Simulator of Master/Slave Manipulator in Virtual Hot Cell

  • Kim, Sung-Hyun;Song, Tae-Gil;Lee, Jong-Yul;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.100.6-100
    • /
    • 2002
  • The crane and the master-slave manipulators (MSM) are widely used as a remote handling device in nuclear facilities such as the hot cell. The equipment to be installed in the hot cell should be optimally placed within the workspace of the wall-mounted slave manipulator for the maintenance operation. Also, the slave manipulator with the end effectors should be properly positioned and oriented for the dedicated maintenance operation. Hence, the workspace and the motion of the slave manipulator, as well as, the remote operation task should be analyzed before installing the manipulators and the hot cell equipment. For this purpose, the 3D graphic simulator, which simulates the remote operation o...

  • PDF

Dynamic Analysis of a Flexible Structure in Motion (운동 중인 유연한 구조물의 동적 해석)

  • Sin Young Lee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.390-395
    • /
    • 2003
  • Moving flexible structures such as transfer systems in press machine, crane, working table of machine tools have vibration problems because of starting, feeding and stopping. An analysis method is suggested and experimentally studied in order to solve a vibration problem of a moving flexible structure. In this method, the concepts of substructure synthesis method and semi-static displacement including rigid body mode were used. Total deformation of a structure was assumed to be composed of quasi-static and dynamic components. Experimental results from an elementary model of a transfer feeder showed good agreements with computational results.

  • PDF

Wind Tunnel Testing Productivity at KARI LSWT

  • Chung, Jindeog;Cho, Taehwan;Sung, Bongzoo;Lee, Jangyeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.103-109
    • /
    • 2001
  • Productivity enhancement program of wind tunnel testing has begun at Korea Aerospace Research Institute Low Speed Wind Tunnel (KARI LSWT). A previous test record of a canard airplane model was adopted to examine the current status of wind tunnel testing efficiency. The time consumed to perform testing activities from the model preparation to data collection was broken down and the results were compared with those of the recent Boeing low speed test result. The efforts to improve the wind tunnel productivity consisted of the installation of mini crane underneath of test section, fabricating lift device for image fairings, model configuration changing rigs and the modifications of external balance system. Time reductions for changing strut interface platform and installation of image fairings. These effects showed more than 70% improvement over the previous test time. Integration of the new and modified systems will improve productivity of wind tunnel testing in KARI LSWT.

  • PDF

Workload of Patients Transferring and its Improving Methods (병원 환자 운반 업무의 작업 부하 분석 및 개선 방안)

  • Kee, Do-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.121-127
    • /
    • 2006
  • Nursing often requires heavy physical work activities such as lifting heavy loads, working in awkward postures, transferring patients, operating hazardous equipment, etc. Among various nursing tasks, patients transferring is one of the most physically demanding tasks. This study aims to investigate workload of the patients transferring, and to propose its improving methods for reducing high workload. The results showed that irrespective of methods for patients transferring and the number of workers involved, workload for most patients transferring tasks exceeded the action limit represented in terms of L5/SI compressive force of 3,400N or LI of 1.0 by NIOSH. The loads for some tasks were far larger than the maximum permissible limit of 6,400N. It is recommended that the mechanical devices for transferring patients such as ceiling crane, sling lift etc. should be introduced rather than simply increasing the number of workers in the tasks.

A Study on Stabilization of Container Cranes Using an Optimal Modulation Controller (최적 변조제어기를 이용한 컨테이너 크레인의 안정화에 관한연구)

  • 허동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.630-636
    • /
    • 1999
  • In this paper in optimal modulation controller for position control and anti-sway of container crane systems is designed by a recursive algorithm that determines the state weighting matrix Q of a linear quadratic performance. The optimal modulation controller is based on optimal control. The basic feature of the recursive algorithm is the reduction of the number of iterations as well as minimization of the calculations involved So in order to obtain a mathematical model which rep-resents the equation of motion of the trolley and load Lagrange equation is used. The optimal modulation controller has been verified and simulated to show that it is robust when a load dis-turbance is applied and a reference is changed.

  • PDF