• Title/Summary/Keyword: Cracking potential

Search Result 134, Processing Time 0.032 seconds

Evaluations of Microstructure and Electrochemical Anodic Polarization of AISI 304L and AISI 316L Stainless Steel Weld Metals with Creq/Nieq Ratio (Creq/Nieq비에 따른 AISI 304L 및 AISI 316L 스테인리스강 용접부의 미세조직 및 전기화학적 양극분극 평가)

  • Kim, Yeon Hee;Jang, Ah Young;Kang, Dong Hoon;Ko, Dae Eun;Shin, Yong Taek;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1090-1096
    • /
    • 2010
  • This pitting corrosion study of welded joints of austenitic stainless steels (AISI 304L and 316L) has addressed the differentiating solidification mode using three newly introduced filler wires with a flux-cored arc welding process (FCAW). The delta ferrite (${\delta}$-ferrite) content in the welded metals increased with an increasing equivalent weight ratio of chromium/nickel ($Cr_{eq}/Ni_{eq}$). Ductility dip cracking (DDC) was observed in the welded metal containing ferrite with none of AISI 304L and 0.1% of AISI 316L. The potentiodynamic anodic polarization results revealed that the $Cr_{eq}/Ni_{eq}$ ratio in a 3.5% NaCl solution didn't much affect the pitting potential ($E_{pit}$). The AISI 316L welded metals with ${\ddot{a}}$-ferrite content of over 10% had a superior $E_{pit}$ value. Though the AISI 316L welded metal with 0.1% ferrite had larger molybdenum contents than AISI 304L specimens, it showed a similar $E_{pit}$ value because the concentration of chloride ions and the corrosion product induced severe damage near the DDC.

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment (고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석)

  • Tae-Young Kim;Sung-Woo Kim;Dong-Jin Kim;Sang-Tae Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment (부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.97-105
    • /
    • 2009
  • Development and use of blended cement concrete is gaining more importance in the construction industry with reference to durability mainly due to the pore refinement and reduction in permeability. Cracks play a major role on important parameters like permeability, rate of chloride ingress, compressive strength and thus affect the reinforcement corrosion protection. Furthermore, when a crack occurs in the cover concrete, the corrosion of the steel reinforcement may be accelerated because the deterioration causing factors can pass through the crack. In recent years the effect of cracking on the penetration of concrete has been the subject of numerous investigations. Therefore assessing the service life using blended concrete becomes obviously in considering the durability. In the present study, the corrosion assessment of composite concrete beams with and without crack with of 0.3mm using OPC, 30% PFA, 60% GGBS, 10% SF was performed using half cell potential measurement, galvanic potential measurement, mass loss of steel over a period of 60days under marine environmental conditions and the results were discussed in detail.

Cracking Behavior and Flexural Performance of RC Beam with Strain Hardening Cement Composite and High-Strength Reinforcing Bar (고강도 철근과 변형경화형 시멘트복합체를 사용한 보의 균열거동 및 휨 성능)

  • Jang, Seok-Joon;Kang, Su-Won;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • This paper describes the effect of strain hardening cement composite (SHCC) material on structure performance of reinforced concrete (RC) beams with high-strength reinforcing bar. Also, this paper explores the structure application of SHCC in order to mitigation cracking damage and improve the ductility of flexural RC members. The prediction model for flexural strength of doubly reinforced SHCC beams are investigated in this study. To achieve the these objectives, a total of 6 rectangular beam specimens were tested under four point monotonic loading condition. The main parameters included the types of cement composite and reinforcing bar. Test results indicated that reinforced beam specimens with SHCC material were improved the structure performances and damage characteristics. Specifically, replacement of conventional high-strength concrete with SHCC materials has the potential of high-strength steel bar as flexural reinforcement on RC members. It is remarkable that suggested method of reinforced SHCC beams with high-strength reinforcing bar could be used usefully to the structure design.

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Shoulder Surfing Attack Modeling and Security Analysis on Commercial Keypad Schemes (어깨너머공격 모델링 및 보안 키패드 취약점 분석)

  • Kim, Sung-Hwan;Park, Min-Su;Kim, Seung-Joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1159-1174
    • /
    • 2014
  • As the use of smartphones and tablet PCs has exploded in recent years, there are many occasions where such devices are used for treating sensitive data such as financial transactions. Naturally, many types of attacks have evolved that target these devices. An attacker can capture a password by direct observation without using any skills in cracking. This is referred to as shoulder surfing and is one of the most effective methods. There has been only a crude definition of shoulder surfing. For example, the Common Evaluation Methodology(CEM) attack potential of Common Criteria (CC), an international standard, does not quantitatively express the strength of an authentication method against shoulder surfing. In this paper, we introduce a shoulder surfing risk calculation method supplements CC. Risk is calculated first by checking vulnerability conditions one by one and the method of the CC attack potential is applied for quantitative expression. We present a case study for security-enhanced QWERTY keyboard and numeric keypad input methods, and the commercially used mobile banking applications are analyzed for shoulder surfing risks.

고온 물에서 304 와 600 합금의 입계응력부식균열(IGSCC)의 상이성과 유사성

  • 권혁상;김수정
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1998.05a
    • /
    • pp.22-22
    • /
    • 1998
  • 304 는 BWR(boiling water reactor)의 reactor 구조용 재료로 사용되고 있고, 합금 600 은 PWR(pressurized water reator) 의 증기 발생기 세관으로 쓰이고 있으며 모두 약 $280{\;}^{\circ}C$ 이상 의 원자로 냉각수에 노출되어 있다. 원자로 냉각수 분위기에서 두 합금의 공통적인 특정은 입계응력부식균열(IGSCC)에 민감한것과 IGSCC가 예민화(sensitization)와 관련이 있는 것이 다. 두 합금에서 일어나는 IGSCC는 원자력발전소의 부식피해중 가장 빈도가 높고 발생시 방사능 누출로 인하여 원전의 신뢰성을 저하시키고, 가동중단으로 인한 경제적 손실을 초 래하여 지난 20 년 동안 가장 심도있게 연구된 주제다. 304 은 크롬 탄화물의 업계 석출로 언하여 예민화된경우 IGSCC 에 민감한 반면 600 은 예민화된 경우 뿐만 아니라 용체화처리된 상태에서도 IGSCC에 민감하다. 오히려 600은 용 체화처리 후 700 C에서 15~20시간 시효처리를 하여 크롬탄화물을 업계에 석출 시커었을 때 IGSCC 저항성이 향상된다. 두 합금의 IGSCC 특정 중 큰 차이는 304는 임계균열전위 ( (critical cracking potential) 이 존재하여 부식전위(corrosion potential) 가 엄계균열전위보다 낮 은 경우 IGSCC 가 일어나지 않지만 그 반대인 경우 IGSCC 에 민감하게된다. 반면에 600 은 뚜렷한 임계균열전위가 존재하지 않고 양극 분극(anodic polarization) 뿐만 아니라 음극분극 시에도 IGSCC 가 일어난다. 이련 이유로 600의 IGSCC 가구로 피막파괴-양극용해(film rupture-anodic dissolution)외에 수소취성(hydrogen embrittlement)기구도 제안되고 었다. 원전의 냉각수는 고 순도의 물이지만 수 처리 과정과 웅축기 배관의 누수로 인한 산소, $Cu^{2+},{\;}S_xO_6{\;}^{2-}(x=3~6)$ 등이 유입되어 오염되는데 이려한 오염물질들이 수 ppm정도 소량 포함된 경우 응 력부식민감도는 상당히 증가된다. 산성분위기 흑은 산소, $Cu^{2+}$, 등이 소량 포합된 산화성 분위기 그리고 sufur oxyanion 에 오염된 고온의 물에서 600 의 IGSCC 민감도는 예민화도가 증가할 수록 민감하여 304 의 IGSCC 와 매우 유사한 거동을 보인다. 본 강연에서는 304 와 600 의 고온 물에서 일어나는 IGSCC 민감도에 미치는 환경, 예민화처리, 합금원소의 영향을 고찰하고 이에 대한 최근의 연구 동향과 방식 방법을 다룬다.

  • PDF

Effect of Stress on the Polarization Characteristic of Al-brass (Al-황동의 분극특성에 미치는 응력의 영향)

  • Lim, Uh-Joh;Jeong, Hae-Kyoo;Sim, Kyong-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.1-5
    • /
    • 2004
  • Al-brass is the raw material of mnufacturing tubes for heat exchanger of vessel where seawater is used to coolant because it has high level of heat coductivity and excellent mechanical properties and high level of corrosion resistance due to cuprous oxide($Cu_2O$) layer against seawater. However, damage of Al-brass tubes for heat exchanger of vessel is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment. In this study, to investigate on the effect of stress on the polarization characteristics of Al-brass. At the stress of 0% and 95% yield strength by constant displacement tester, in 3.5% NaCl + 0.1% $NH_4OH$ solution, the polarization tests were carried out. And thus open circuit potential, corrosion current density, anodic polarization, cyclic polarization and dezincification behavior of Al-brass are investigated.

Decomposition of HFCs using Steam Plasma (스팀 플라즈마를 이용한 HFCs 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Lee, Sung Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.27-37
    • /
    • 2013
  • CFCs (Chlorofluorocarbons) and HCFCs (Hydrochlorofluorocarbons) that are chemically stable were proven to be a greenhouse gases that can destroy ozone layer. On the other hand, HFCs (Hydrofluorocarbons) was developed as an alternative refrigerant for them, but HFCs still have a relatively higher radiative forcing, resulting in a large Global Warming Potential (GWP) of 1,300. Current regulations prohibit production and use of these chemicals. In addition, obligatory removal of existing material is in progress. Methods for the decomposition of these material can be listed as thermal cracking, catalytic decomposition and plasma process. This study reports the development of low cost and high efficiency plasma scrubber. Stability of steam plasma generation and effect of plasma parameters such as frequency of power supply and reactor geometry have been investigated in the course of the development. Method for effective removal of by-product also has been investigated. In this study, elongated rotating arc was proven to be efficient in decomposition of HFCs above 99% and to be able to generate stable steam plasma with steam contents of about 20%.