• Title/Summary/Keyword: Crack-Tip

Search Result 756, Processing Time 0.023 seconds

Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads (혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가)

  • Han, Jeong Woo;Woo, Eun Taek;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.693-700
    • /
    • 2015
  • To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka's equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka's equation, and the Paris' equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

A Study on Evaluation of Plastic Strain at Notch Tip of Weld HAZ in Steel (강 용접 열영향부 놋치 선단 의 소성 스트레인 평가에 관한 연구)

  • 김태영;임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 1984
  • Recrystallization technique was applied to analyze plastic strain at the notch tip of coarse grain HAZ in mild steel (SB 41) and high strength steel (SA 588). The notch tip of specimen was deformed by three point bending. Accumulated displacement (Crack Opening Displacement ${delta}t$) by the monotonic and cyclic loading under room temperature and hot strain embrittlement temperature ($250^{\circ}C$) was 0~1.0mm. Recrystallization heat treatment conditions were $650^{circ}C{ imes}3hr$ for SB 41 and $700^{circ}C{ imes}3hr$ for SA 588. The experimental results obtained were as follows ; 1) Distribution of the effective plastic strain at plastic zone was appeared by the function of crack opening displacement, and plastic zone or the effective plastic strain increased with crack opening displacement. 2) Plastic strain at notch tip of HAZ due to accumulated hot strain calculated as follows. .epsilon. over bar $_{p}$ = .epsilon. over bar $_{cr}$ (x/ $R_{x}$ ) $^{m}$ (m=0.25) 3) Work hardending ratio of notch tip for hot strain was linearly increased with .epsilon. over bar $_{max}$ and dependent upon the material types.s.

  • PDF

The Numerical Analysis for the Surface Crack Behavior in the Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 표면균열거동에 관한 수치해석)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • A fuel cell is an energy conversion device that converts a chemical energy directly into an electrical energy and has higher energy efficiency than an internal combustion engine, but solid oxide fuel cell (SOFC) consisting of brittle ceramic material remains as a major issue regarding the mechanical properties as the crack formation and propagation. In this study, the stress distribution and crack behavior around the crack tip were evaluated, due to investigated the effects of the surface crack at the operating condition of high temperature. As a result, the difference of the generated stress was insignificant at operating conditions of high temperature according to the surface crack length changes. This is because, the high stiffness interconnect has a closed structure to suppress cell deformation about thermal expansion. The stress intensity factor ratio $K_{II}/K_I$ increased as the crack depth increased, at that time the effect of $K_{II}$ is larger than that of $K_I$. Also the maximum stress intensity factor increased as the crack depth increased, but the location of crack was generated at the electrolyte/anode interface, not at the crack tip.

Stress intensity factor and stress distribution near crack tip for infinite body containing regid inclusion with crack shape (균열형상의 강체함유물을 포함하는 무한체에 대한 균열선단 부근의 응력분포와 응력세기계수)

  • Lee, Kang-Young;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.680-683
    • /
    • 1998
  • In case of the infinite body containing a rigid inclusion with line crack shape, stress intensity factor is determined and the relation between stress intensity factor and stress distribution near a crack tip is developed. Also, the relation between stress intensity factor and Kolosoff stress function is developed. Finally, these results are compared with those that the crack surface is under no traction.

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System. (전자스페클 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • Kim, Kyung-Su;Shin, Byung-Chun;Shim, Chun-Sik;Park, Jin-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-144
    • /
    • 2002
  • In this paper, the plastic zone size ahead of the crack tip of DENT specimen and the crack growth length under cyclic loading were measured by ESPI system. These results of the plastic zone size measured by ESPI system were compared with the plastic zone size proposed by Irwin. The results of tile crack growth length measured by it were also compared with them measured by the image analysis system. It is confirmed that it is possible to measure the plastic zone and crack growth length.

  • PDF

A Study on the Apparent Negative Crack Growth Phenomenon of J-R Curve(I) (J-R곡선에서의 균열길이 감소현상에 관한 연구 (I))

  • 석창성;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1115-1120
    • /
    • 1992
  • The apparent negative crack growth phenomenon which usually arises in partial unloading compliance test is well known. The reason for apparent negative crack growth is the compressive residual stress caused by the plastic zone around the crack tip. The phenomenon as a possible source of error in determining $J_{JC}$ or J-R curve from partial unloading compliance experiments may be eliminated by the correction of compliance. A compliance correction equation is derived from a stress field analysis near the crack tip.

R-curve Analysis of Alumina Ceramics (알루미나 세라믹스의 R-curve 분석)

  • 김성진;손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1099-1106
    • /
    • 1994
  • It is suggested that the microstructural toughening process in the initial rising portion of R-curves observed in polycrystalline alumina should be different from the grain bridging mechanism identified in the long crack regime. Microcracking in the advancing crack front seems to be a prerequisite for the development of unbroken bridging ligaments behind the crack tip. In order to test such a proposition, attempts were made to identify experimentally the presence of microcracks in the frontal zone of propagating cracks. In-situ observation is made of crack growth in a miniature double cantilever beam specimen of a average grain size of 10 ${\mu}{\textrm}{m}$ alumina. Presence of a few microcracks was identified in front of crack tip on the propagating crack plane. The R-curves were re-evaluated based on the observation.

  • PDF

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System (전자스패클패턴 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.13-18
    • /
    • 2002
  • The magnitude of the plastic zone around the crack tip of DENT(Double Edge Notched Tension) specimen and the crack growth length under cyclic loading were measured by ESPI(Electronic Speckle Pattern Interferometry) system. The measured magnitude of plastic zone was compared with the equations proposed by Irwin and calculated by a nonlinear static method of MSC/NASTRAN. The measured crack growth length by ESPI system was also compared with the obtained data by the image analysis system. From the study, it is confirmed that the plastic zone and crack growth length can be measured accurately with the high-tech equipment.

Dynamic Stress Intensity Factor $K_{IIID}$ for a Propagating Crack in Liner Functionally Gradient Materials Along X Direction (X방향의 선형함수구배인 재료에서 전파하는 균열의 동적응력확대계수 $K_{IIID}$)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.3-8
    • /
    • 2001
  • Dynamic stress intensity factors (DSIFs) are obtained when a crack propagates with constant velocity in rectangular functionally gradient materials (FGMs) under dynamic mode III load. To obtain the dynamic stress intensity factors, it is used the general stress and displacement fields of FGMs for propagating crack and the boundary collocation method (BCM). The stress intensity factors and energy release rates are the greatest in the increasing properties $(\xi>0)$, next constant properties $(\x=0)$ and decreasing properties $(\xi<0)$ under constant crack tip properties and crack tip speed.

  • PDF

Energy Release Rates for a Dynamically Growing Crack in Orthotropic Materials (직교이방체에서 동적성장하는 균열에 대한 에너지해방률)

  • 주석재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1590-1596
    • /
    • 1995
  • The energy release rates for a dynamically growing crack in orthotropic materials are expressed explicitly in terms of dynamic stress intensity factors. The stress functions suitable for the problem are found and the evaluation of the J-integral for the theoretical singular crack tip fields yields energy release rates. The present results are simpler than the existing ones and can be reduced to the well known solutions in special cases. Examples of extracting stress intensity factors from the finite element solution using the present results are given for the dynamically growing crack problem of orthotropic materials.