• Title/Summary/Keyword: Crack-Closure

Search Result 196, Processing Time 0.033 seconds

A Study on the Fatigue Growth Behavior of Surface Cracks -Prediction of Crack Aspect Ratio under the Constant Amplitude Tension Fatigue Loads- (표면균열의 피로성장거동연구 -인장 반복 하중하에서의 균열형상비 예측-)

  • 최용식;양원호;김재원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 1990
  • The fatigue growth behavior of surface cracks cannot be adequately predicted solely by stress intensity factor analysis. This is caused by different plastic deformation due to variations in the stress field triaxiality along the crack tip. Therefore, a new model which accounts for the crack closure phenomenon is proposed in this paper to predict the fatigue crack growth patterns for surface cracks. Fatigue tests were performed to develop the new model for the prediction and to assess the accuracy of the analysis. The predicted crack growth behavior for PMMA and Aluminum alloy 7075-T6 materials agreed well with the experimental data.

  • PDF

Sensitive NDE of Small Fatigue Cracks

  • Saka, Masumi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • Some techniques developed recently for sizing smalt fatigue cracks are described. One is an ultrasonic technique which deals with a small closed crack, where both the stress closing the crack and the crack size are determined by analyzing inverse problem. Here, difficulties encountered in NDE of closed cracks by usual ultrasonic techniques are summarized in advance. Secondly, the closely coupled probes potential drop (CCPPD) technique, which is based on d-c potential drop measurement, is explained fur sizing small cracks. The CCPPD technique is not affected by crack closure. Finally, a discussion is given on NDE of materials degradation in conjunction with sensitive NDE of small cracks.

  • PDF

Effect of Stress Ration on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516-Grade70 at Higt Temperature. (원자로 압력용기용 강의 고온피로특성에 미치는 응력비의 영향)

  • 박경동;정찬기;김정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1108-1114
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516-Grade 70 steel which is used for pressure vessels was experimentally examined under the condition of at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ration of R=0.1 and 0.3. The fatigue crack propagation rate , da/dN, related with the stress intensity factor range, $\vartriangle$N, was influenced by the stress ration within the stable growth of fatigue crack(Region II) with an increase in $\vartriangle$N. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations revels that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack and oxide-induced by high temperature.

  • PDF

A Study on Non-propagating Crack in Fatigue Behavior of Pure Titanium (공업용 순 티타늄의 피로거동에서 정류균열에 관한 연구)

  • Kim, Dong-Yeol;Kim, Jin-Hak;Kim, Min-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1001-1006
    • /
    • 2000
  • To verify the existing theory, non-propagating crack(NPC) does not exist in Ti which fulfills the good conditions for being of NPC, NPC detection in Ti was tried out. Also, the conception of fatigue limit in Ti and a main cause for NPC being were inquired. NPC was detected in both sharp notch root ( $\rho$=0.02mm) and micro pit (diameter = 0.25mm) which held fast to the end under stressing of fatigue limit. Therefore, the existing theory was identified as mistake. But, NPC can not be detected in smooth specimen. This fact would be due to the presumption that NPC is very small or crack does not initiate in smooth specimen. Anyway, the fatigue limit of Ti does not correspond to critical stress of crack initiation but correspond to critical stress of NPC growth. Measurement on the COD of NPC in Ti showed that the crack tip was closed even under the peak stress level at fatigue limit. But, after stress relieving annealing crack tip was opened. Consequently, compressive residual stress which is induced around the crack tip is considered to be the factor causing the NPC being.

Influence of Stress Ratio of Elastic Waves Generated by Fatigue Crack Growth and Penetration in 6061 Aluminum Plates (6061알루미늄의 피로 균열 성장과 관통에 따른 탄성파의 응력비 영향)

  • Ahn Seok Hwan;Kim Jin Wook;Nam Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.822-827
    • /
    • 2005
  • The characteristics of elastic waves emanating from crack initiation and propagation in 6061 aluminum alloy subjected to fatigue loading with different stress ratio was investigated. The objective of this study is to determine the properties of the signals generated from each stage of fatigue crack growth. AS a crack propagates, substantial elastic wave occurred just prior to penetration. Then it decreased and the crack penetrated. The waveforms and their power spectra were found to be dependent on the different stress ratio associated with the signals. It is determined that high-frequency signal $0.5{\sim}0.75$ MHz is most likely emitted during crack propagation at peak load of fatigue cycle which release the highest energy. It is determined that 0.3 MHz is closely related to crack closure effect. The frequency peaks below 0.25 MHz may be attributed to fretting or hydraulic noise.

Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures (저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동)

  • 김철수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

The Effect of Temperature on Fatigue Fracture of Pressure Vessel Steel for Vehicle (차량용 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • 박경동;김영대;김형자
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.219-226
    • /
    • 2003
  • The fatigue crack growth behavior of the SA516/60 steel used for pressure vessels was examined experimentally at room temperatures $25^{\circ}C$,$-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. fatigue crack propagation rate da/dN related with stress intensity factor range $\Delta$K was influenced by stress ratio in stable than fatigue crack growth (Region II) with an increase in $\Delta$K. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are explained mainly by the crack closure and the strengthening due to the plasticity near the crack tip and roughness of the crack faces induced.

The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature (SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향)

  • 박경동;김정호;최병국;임만배
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響)

  • 박영조;김정규;신용승;김성민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1986
  • Fatigue surface crack growth was studied in 7075-T651 aluminum alloy plates subjected largely to bending loads. The surface crack length and its depth were measurement by the unloading elastic compliance method. The surface crack growth rate dc/dN, on the surface and da/dN, in the depth direction were obtained by the secant method. The stress intensity factor range .DELTA.K was computed by means of Newman and Raju equation. The aspect ratio a/c was presented in form of a/c=0.815-0.853(a/T). The effect of the stress ratio on the stable surface crack growth rates under increasing .DELTA.T is larger in lower .DELTA.K, while the relation between dc/dN, da/dN and the effective stress intensity factor range .DELTA.K$_{eff}$ is weakly dependent on the stress ratio.o.

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.