• Title/Summary/Keyword: Crack stability

Search Result 306, Processing Time 0.032 seconds

Experimental study on rock-coal-rock composite structure with different crack characteristics

  • Li, Tan;Chen, Guangbo;Li, Qinghai
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.377-390
    • /
    • 2022
  • The stability of the roof rock-coal pillar-floor rock composite structure is of great significance to coal mine safety production. The cracks existing in the composite structure seriously affect the stability of the roof rock-coal pillar-floor rock composite structure. The numerical simulation tests of rock-coal-rock composite structures with different crack characteristics were carried out to reveal the composite structures' mechanical properties and failure mechanisms. The test results show that the rock-coal-rock composite structure's peak stress and elastic modulus are directly proportional to the crack angle and inversely proportional to the crack length. The smaller the crack angle, the more branch cracks produced near the main control crack in the rock-coal-rock composite structure, and the larger the angle between the main control crack and the crack. The smaller the crack length, the larger the width of the crack zone. The impact energy index of the rock-coal-rock composite structure decreases first and then increases with the increase of crack length and increases with the increase of crack angle. The functional relationships between the different crack characteristics, peak stress, and impact energy index are determined based on the sensitivity analysis. The determination of the functional relationship can fully grasp the influence of the crack angle and the crack length on the peak stress and impact energy index of the coal-rock composite structure. The research results can provide a theoretical basis and guidance for preventing the instability and failure of the coal pillar-roof composite structure.

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Stability Analysis of Cracked Cantilever Beam With Tip Mass and Follower Force (끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석)

  • Yoon, Han-Ik;Son, In-Soo;Ahn, Tae-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.99-104
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam with tip mass and follower force is presented. In addition. an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter ins stability based on the variation of the first two resonant frequencies of the beam. Besides. the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Effects of Slenderness Ratio on Dynamic Behavior of Cracked Beams Subjected to Subtangential Follower Force (경사종동력과 크랙을 가진 보의 진동특성에 미치는 세장비의 영향)

  • Son, In-Soo;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper the purpose is to investigate the stability and variation of natural frequency of a cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the stability of a cantilever beam as the crack effect and slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. By using the results of this paper, we can obtain the judgment base that the choice of beam models for the effect of slenderness ratio and crack.

Effects of Crack on Stability of Timoshenko Beams Subjected to Subtangential Follower Force (경사 종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1327-1334
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability of cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the instability(critical follower force of flutter and divergence) of a cracked beam as slenderness ratio and subtangential coefficient is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The results of this study will contribute to the safety test and stability estimation of structures of a cracked beam subjected to subtangential follower force.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

Computer modeling of crack propagation in concrete retaining walls: A case study

  • Azarafza, Mehdi;Feizi-Derakhshi, Mohammad-Reza;Azarafza, Mohammad
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.509-514
    • /
    • 2017
  • Concrete retaining walls are the most common types of geotechnical structures for controlling instable slopes resulting from lateral pressure. In analytical stability, calculation of the concrete retaining walls is regarded as a rigid mass when its safety is required. When cracks in these structures are created, the stability may be enforced and causes to defeat. Therefore, identification, creation and propagation of cracks are among the important steps in control of lacks and stabilization. Using the numerical methods for simulation of crack propagation in concrete retaining walls bodies are among the new aspects of geotechnical analysis. Among the considered analytical methods in geotechnical appraisal, the boundary element method (BEM) for simulation of crack propagation in concrete retaining walls is very convenient. Considered concrete retaining wall of this paper is Pars Power Plant structured in south side in Assalouyeh, SW of Iran. This wall's type is RW6 with 11 m height and 440 m length and endurance of refinery construction lateral forces. To evaluate displacement and stress distributions (${\sigma}_{1,max}/{\sigma}_{3,min}$), the surrounding, especially in tip and its opening crack BEM, is considered an appropriate method. By considering the result of this study, with accurate simulation of crack propagation, it is possible to determine the final status of progressive failure in concrete retaining walls and anticipate the suitable stabilization method.

Influence of undercut and surface crack on the stability of a vertical escarpment

  • Banerjee, Sounik K.;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.965-981
    • /
    • 2017
  • Stability of vertical escarpments has been the subject of discussion for long time. However, available literature provides scarce knowledge about the effect of the formation of undercut and surface cracks on the stability of a vertical escarpment. The present study deals with a systematic analysis of the effect of surface cracks and undercut on slope stability using finite element based lower bound limit analysis. In the present analysis, the non-dimensional stability factor (${\gamma}H/c$) is used to inspect the degrading effect of undercut and cracks developed at different offset distances from the edge of the vertical escarpment. Failure patterns are also studied in detail to understand the extent and the type of failure zone which may generate during the state of collapse.

The Influence of the Small Circular Hole Defect on the Fatigue Crack Propagation Behavior in Aluminum Alloys (알루미늄 합금재의 피로크랙 전파거동에 미치는 미소원공결함)

  • Kim, G.H.;Lee, H.Y.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.834-840
    • /
    • 2008
  • We carried out fatigue testing with materials of aluminum alloyC7075-T6, 2024-T4) by rotary bending fatigue tester. We investigated fatigue limit, fatigue crack initiation, fatigue crack propagation behavior and possibility of fatigue life prediction to the different small circular hole defect. The summarized result are as follows; Fatigue limit of the smooth specimens were related tensile strength and yield strength. In case of more large applied stress and small circular hole crack defect, the fatigue crack was grown rapidly. The fatigue crack propagation behavior proceed at according to inclusion. Fatigue crack propagation ratio appeared instability and retardation phenomenon in the first half of fatigue life but appeared stability and replied in the latter half. On other hand, this experimental data of the materials are appeared fatigue life predictability.