• 제목/요약/키워드: Crack moment

검색결과 239건 처리시간 0.033초

Analysis on Short Crack Growth Rate after Single Overload under Cyclic Bending Moment

  • Song, Sam-Hong;Lee, Kyeong-Ro;Kim, Amkee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.19-26
    • /
    • 2001
  • In order to investigate the effect of single tensile overload on the short crack growth behavior under the out-of-plane cyclic bending moment, crack opening stresses were continuously measured by an elastic compliance method using strain gages. The characteristics of short crack growth after the single tensile overload are analyzed by the effective stress range ratio. Futhermore, the investigation was carried out with respect to various fatigue crack growth behaviors such as the plastic zone size effect on crack retardation, the retarded crack length and the number of cycles.

  • PDF

소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 - (Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates -)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

내부크랙을 가지며 비틀림모멘트를 받는 중공축의 응력해석 (Stress Analysis of Hollow Cylinder with Inner Cracks Subjected to Torsion Moment)

  • 이종선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.123-128
    • /
    • 1998
  • In fracture problems, stress intensity factors obtained theoretically and experimentally have been effectively utilized in the analytical evaluation of the cracks effect. The effect of surface crack of a cylindrical and a hollow cylindrical bar is investigated, as well as the effect of the thickness of a hollow cylindrical bar and inclined crack of a hollow cylinder subjected to torsion moment. In this study, stress intensity factor Km of mode III which expresses the stress state in the neighborhood of a crack tip is used. Stress analysis was conducted of the inside of a hollow cylinder in the axial direction of three dimensional crack tip subjected to torsion moment by combining the caustics method and the stress freezing method.

  • PDF

내부크랙을 가지며 비틀림모멘트를 받는 중공축의 응력해석 (Stress Analysis of Hollow Cylinder with Inner Cracks Subjected to Torsion Moment)

  • 이종선;하영민
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.46-52
    • /
    • 1998
  • In fracture problems, stress intensity factors obtained theoretically and experimentally have been effectively utilized in the analytical evolution of the cracks effect. The effect of surface crack of a cylindrical and a hollow cylindrical bar is investigated, as well as the effect of the thickness of a hollow cylindrical bar and inclined crack of a hollow cylinder subjected to torsion moment. In this study, stress intensity factor Km of mode III which expresses the stress state in the neighborhood of a crack tip is used. stress analysis was conducted on the inside of hollow cylinder inthe axial direction of three dimensional crack tip subjected to torsion moment by combining the caustics method and the stress freezing method.

  • PDF

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • 제12권1호
    • /
    • pp.69-81
    • /
    • 2023
  • This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

휨 항복형 철근콘크리트 전단벽의 등가소성힌지길이 모델 (Equivalent Plastic Hinge Length Model for Flexure-Governed RC Shear Walls)

  • 문주현;양근혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2014
  • 본 연구의 목적은 경계요소를 갖는 철근콘크리트 전단벽의 잠재소성힌지길이를 합리적으로 평가할 수 있는 단순모델의 제시이다. 전단벽의 높이에 따른 이상화된 곡률분포로부터, 기본방정식은 항복모멘트와 최대모멘트 그리고 사인장균열에 의한 부가모멘트의 함수로 일반화되었다. 전단벽의 항복모멘트와 최대모멘트는 변형률 적합조건과 힘의 평형조건을 기반하여 산정하였다. 사인장균열 발생의 여부는 ACI 318-11에서 제시된 콘크리트의 전단력으로부터 검토되었으며, 부가모멘트는 Park and Paulay에 의해 제시된 트러스기구를 이용하여 산정하였다. 이들 모멘트식들은 다양한 변수범위에서 변수연구를 수행하였다. 결과적으로 등가소성힌지길이는 주철근 및 수직철근지수와 축력지수의 함수로 제시될 수 있었다. 제시된 등가소성힌지길이의 모델은 실험결과의 비교에서 평균 및 표준편차가 각각 1.019와 0.102로 실험 결과를 정확하게 예측하였다.

음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구 (An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission)

  • 이경수;김진섭;최종원;이창수
    • 지질공학
    • /
    • 제21권4호
    • /
    • pp.295-304
    • /
    • 2011
  • 방사성폐기물처분장 주변 암반의 수많은 불확실성을 이해하기 위해서는 무결암에서 발생하는 균열의 성장과 거동 분석은 필수이다. 이에 본 연구에서는 처분장과 유사한 지질적 구조적 특성을 지닌 한국원자력연구원 내에 위치한 지하처분연구시설에서 채취한 화강암 시료를 이용하여 균열의 성장과 이에 따른 손상도를 AE parameter와 모멘트텐서해석법을 이용하여 분석하였다. 시료의 균열개시 균열결합 균열손상응력은 최대강도의 0.45배, 0.73배, 0.84배인 것으로 나타났다. 모벤트텐서해석법을 이용한 결과 응력 초기에는 인장균열의 발달이 우세하였으나 응력 수준이 증가함에 따라 전단균열이 발달하였다. 또한 시료에 균열손상응력 이상의 응력이 가해지면 파괴면을 중심으로 불안정한 전단균열이 발생하였으며 이는 파괴에 직접적인 역할을 하는 것으로 해석되었다.

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.