• 제목/요약/키워드: Crack model

검색결과 1,530건 처리시간 0.027초

취성소재 연삭마멸에서의 측면균열에 관한 연구 (Lateral Crack in Abrasive Wear of Brittle Solids)

  • 안유민;박상신;최상현
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.46-51
    • /
    • 1999
  • An analytical model about lateral crack occurring in abrasive wear of brittle solids is developed. Stress field around the lateral crack and stress intensity factor at the crack tip are analytically modeled. Abrasive wear by abrasive particle is experimentally studied. In soda-lime glass, it is observed that chipping by lateral crack occurs and produces the greatest material removal when normal load applied by the abrasive particle is about 1.5∼3.0 N. The prediction of lateral crack length from the model is compared with the experimentally measured length in soda-lime glass.

Modelling time-dependent cracking in reinforced concrete using bond-slip Interface elements

  • Chong, Kak Tien;Gilbert, R. Ian;Foster, Stephen J.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.151-168
    • /
    • 2004
  • A two-dimensional nonlinear finite element model is developed to simulate time-dependent cracking of reinforced concrete members under service loads. To predict localized cracking, the crack band model is employed to model individual crack opening. In conjunction with the crack band model, a bond-interface element is used to model the slip between concrete and reinforcing steel permitting large slip displacements between the concrete element nodes and the steel truss element nodes at crack openings. The time-dependent effects of concrete creep and shrinkage are incorporated into the smeared crack model as inelastic pre-strains in an iterative solution procedure. Two test examples are shown to verify the finite element model with good agreement between the model and the observed test results.

전기적 항복영역을 갖는 전왜균열에 대한 응력강도계수 계산 (Evaluation of Stress Intensity Factors for an Electrostrictive Crack with an Electric Yielding Zone)

  • 범현규;정은도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.469-472
    • /
    • 2000
  • a crack with electrically impermeable surfaces in an electrostrictive material subjected to uniform electric loading is analysed. A strip yield zone model is employed to investigate the effect of electric yielding on stress intensity factor. complete forms of electric fields and elastic fields for the crack are derived by using complex function theory. /the stress intensity factors are obtained based on the strip yield zone model.

  • PDF

AZ31 마그네슘합금의 시편두께 조건에 따른 실험적 피로균열전파모델 평가 (Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Specimen Thickness Conditions)

  • 최선순
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.646-652
    • /
    • 2014
  • 본 논문의 목적은 AZ31 마그네슘합금의 균열성장거동의 경향을 묘사할 수 있는 실험적 피로균열전파모델을 시편두께 조건에서 평가하여 적합한 모델을 제시하는 것이다. 평가에 사용된 실험적 모델은 Paris-Erdogan 모델, Walker 모델, Forman 모델, 수정된 Forman 모델이며, 각 모델의 파라미터를 통계적으로 추정하기 위하여 최우추정법을 사용하였다. 두께조건이 피로균열전파거동 예측에 미치는 영향을 고려하면서 적합한 모델을 평가하기 위해 시편두께의 3가지 조건을 변화시키면서 피로균열전파실험을 수행하여 통계적 균열성장 데이터를 획득하였다. 시편두께 조건에 따라 마그네슘합금의 균열성장거동의 경향을 잘 묘사하는 모델은 Paris-Erdogan 모델과 Walker 모델이며, 모델의 파라미터 중 피로균열성장속도지수는 시편두께가 4.75mm와 6.60mm 조건에서 재료상수가 될 수 있음을 밝혀내었다. 그러나 시편두께가 두꺼운 경우에는 양상에 차이를 보이므로 모델 선정 시 신중한 판단이 요구된다.

Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures

  • Ventura-Gouveia, A.;Barros, Joaquim A.O.;Azevedo, Alvaro F.M.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.735-755
    • /
    • 2011
  • The capability of a multi-directional fixed smeared crack constitutive model to simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The constitutive model is implemented in a computer program based on the finite element method, where the FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack component. The in-plane shear crack component is obtained using the concept of shear retention factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase of the corresponding shear strain components, after crack initiation. With this relatively simple approach, accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To assess the predictive performance of the model, a punching experimental test of a module of a façade panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The influence of some parameters defining the softening diagrams is discussed.

Crack behaviour of top layer in layered rocks

  • Chang, Xu;Ma, Wenya;Li, Zhenhua;Wang, Hui
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.49-58
    • /
    • 2018
  • Open-mode cracks could be commonly observed in layered rocks. A concept model is firstly used to explore the mechanism of the vertical cracks (VCs) in the top layer. Then the crack behaviour of the two-layer model is simulated based on a cohesive zone model (CZM) for layer interfaces and a plastic-damage model for rocks. The model indicates that the tensile stress normal to the VCs changes to compression if the crack spacing to layer thickness ratio is lower than a threshold. The results indicate that there is a threshold for interfacial shear strength that controls the crack patterns of the layered system. If the shear strength is lower than the threshold, the top layer is meshed by the VCs and interfacial cracks (ICs). When the shear strength is higher than the threshold, the top layer is meshed by the VCs and parallel cracks (PCs). If the shear strength is comparative to the threshold, a combining pattern of VCs, PCs and ICs for the top layer can be formed. The evolutions of stress distribution in the crack-bound block indicate that the ICs and PCs can reduce the load transferred for the substrate layer, and thus leads to a crack saturation state.

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

Time domain identification of multiple cracks in a beam

  • He, Z.Y.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.773-789
    • /
    • 2010
  • It is well known that the analytical vibration characteristic of a cracked beam depends largely on the crack model. In the forward analysis, an improved and simplified approach in modeling discrete open cracks in beams is presented. The effective length of the crack zone on both sides of a crack with stiffness reduction is formulated in terms of the crack depth. Both free and forced vibrations of cracked beams are studied in this paper and the results from the proposed modified crack model and other existing models are compared. The modified crack model gives very accurate predictions in the modal frequencies and time responses of the beams particularly with overlaps in the effective lengths with reduced stiffness. In the inverse analysis, the response sensitivity with respect to damage parameters (the location and depth of crack, etc.) is derived. And the dynamic response sensitivity is used to update the damage parameters. The identified results from both numerical simulations and experiment work illustrate the effectiveness of the proposed method.

일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측 (Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition)

  • 이억섭;김승권
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

Hydraulic fracture simulation of concrete using the SBFEM-FVM model

  • Zhang, Peng;Du, Chengbin;Zhao, Wenhu;Zhang, Deheng
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.553-562
    • /
    • 2021
  • In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.