• 제목/요약/키워드: Crack growth retardation

검색결과 78건 처리시간 0.029초

과하중을 받는 일체형 보강판의 피로균열 성장거동 해석 (Analysis of fatigue Crack Growth Behavior in the Integrally Stiffened Panels Subjected to Single Overload)

  • 이환우;서정호
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.28-34
    • /
    • 2004
  • It is well known that tensile peak overloads may significantly delay suubsequent constant amplitude fatigue crack growth in many materials. Since real structures are usually subjected to complex load histories, the ability to predict accurate crack growth under realistic service conditions is of major engineering interest. This paper describes experiments on fatigue track growth in the integrally stiffened panel of 7075-T6 aluminum alloy. The effect of shape parameters and overload position on the fatigue crack growth behavior of integrally stiffened panels are discussed. Based on the experimental results, the following conclusions have been drawn: the overall fatigue crack growth retardation resulting from single overload in the stiffened panels was generally larger in the larger thickness ratio, although the retardation trends, according to the change in overload positions, were similar to those exhibited in the non-stiffened panels.

7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동 (Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions)

  • 신용승
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

단일과대하중이 피로균열성장에 미치는 영향에 관한 연구 (A Study on the Effect of a Single Overload on Fatigue Crack Retardation)

  • 김경수;김성찬;심천식;박진영;이창환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 2002
  • Ships and ocean structures are generally under random loading. Various type of variable-amplitude loading affects fatigue crack growth and fatigue life. However interaction effects due to irregularity of loading including random loading have not explained exactly and it is difficult to examined fatigue crack growth behaviour and fatigue life for this reason. Therefore in this paper crack growth tests with constant-amplitude loading including a single overload were conducted to measure plastic zone size near crack tip of DENT specimen. And the observed plastic zone sized were discussed in terms of crack growth rate. As a result of this the effect the plastic rue size due to the overload is examined on the effect on crack growth rate and, consequently, fatigue life.

  • PDF

단일과대하중하의 부식피로균열진전거동에 관한 연구 (A Study on Corrosion Fatigye Crack Propagation Behaviors due to a Single Overload)

  • 강동명;이하성;우창기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.481-485
    • /
    • 1997
  • 6063-T5 alloys are tested in laboratory air, water and 3% NaCl solution to investigate the effects of corrosive environment on the retardation behavior through single overload fatigue test. Also, the fatigue crack propagation and the crack closure behavior are studied. The results obtained in this experimental study are summarized as follows: 1) Behaviors of fatigue crack growth retardation are observed in water and 3% NaCl solution as they do in air. The number of delay cycles and the size of affected region by single overload decrease greatly in water and 3% NaCl compared with those in air. 2) In fractographic results, the overload marking by single overload appear remarkably in air, but indistinctly in water and 3% NaCl solution. 3) The effect of crack closure on crack propagation is most remarkable in the beginning of crack propagation. With crack propagation, the crack closure level and its effect decrease greatly.

  • PDF

변동하중하에서 고강도 알루미늄 합금의 피로수명 예측 (Fatigue Life Prediction for High Strength AI-alloy under Variable Amplitude Loading)

  • 심동석;김강범;김정규
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2074-2082
    • /
    • 2000
  • In this study, to investigate and to predict the crack growth behavior under variable amplitude loading, crack growth tests are conducted on 7075-T6 aluminum alloy. The loading wave forms are generated by normal random number generator. All wave forms have same average and RMS(root mean square) value, but different standard deviation, which is to vary the maximum load in each wave. The modified Forman's equation is used as crack growth equation. Using the retardation coefficient D defined in previous study, the load interaction effect is considered. The variability in crack growth process is described by the random variable Z which was obtained from crack growth tests under constant amplitude loading in previous work. From these, a statistical model is developed. The curves predicted by the proposed model well describe the crack growth behavior under variable amplitude loading and agree with experimental data. In addition, this model well predicts the variability in crack growth process under variable amplitude loading.

해수환경에서 강 용접부의 환경강도평가에 관한 연구 1

  • 정세희;김태영;나의균
    • Journal of Welding and Joining
    • /
    • 제6권2호
    • /
    • pp.56-63
    • /
    • 1988
  • The effects of PWHT (poste weld heat treatment) and stress simulating the residual stress during PWHT in weld HAZ of low and high strength steels on corrosion fatigue crack growth were evaluated. The obtained results are summarized as follows. 1. Fatigue crack growth rate of HAZ in air and 3.5% NaCl solution was slower than that of parent due to the signgularity in weld HAZ. 2. In the case of HT-80, 3.5% NaCl solutio nacts to accelerate the crack growth for all specimens, and the sensitivity of as-weld to corrosion environment was the greatest among other PWHT specimens. 3. Corrosion fatigue crack growth of parent, as-weld and PWHT speciments ofr SS41 as well as SM53B was retarded in comparison with the fatigue crack growth in air. 4. There was a tendency that crack growth of PWHT specimens subjected $10kg/mm^2$ was faster than that of PWHT specimens without stress during PWHT. 5. The retardation phenomenon of crack growth in corrosion environment is attributed to the crack branching decreased .DELTA.K due to the corrosion products and multi-cracks.

  • PDF

단순변동하중(單純變動荷重)을 받는 용접구조용강(鎔接構造用鋼)의 피로균열성장(疲勞龜裂成長) (Fatigue Crack Growth of Welded-Structural Steel under Simple-Variable Loading)

  • 장동일;박용걸;이봉학
    • 대한토목학회논문집
    • /
    • 제7권4호
    • /
    • pp.103-113
    • /
    • 1987
  • 본(本) 연구(硏究)는 단순변동하중하(單純變動荷重下)에서의 피로균열성장거동(疲勞龜裂成長擧動)을 고찰하고 해석방법(解析方法)을 구하고자, 용접구조용강(鎔接構造用鋼) SWS 58을 사용하여 CT 시험편을 제작하고 간단한 하중모델을 설정(設定)하여 피로실험(疲勞實驗)을 행했다. 그 결과 단일과하중작용직후(單一過荷重作用直後)에는 가속효과(加速效果)가 경미(輕微)하게 발생하였으며 그후 상당한 지연효과(遲延效果)가 발생했다. 2단중복하중하(段重復荷重下)에서는 low-high인 경우 약간의 가속효과(加速效果)가 발생하나 high-low인 경우는 상당한 지연효과(遲延效果)가 발생했다. 이러한 하중변화(荷重變化)에 따른 균열성장율(龜裂成長率)(da/dN)은 균열선단(龜裂先端)의 잔류응력(殘留應力)과 소성영역(塑性領域)으로 인한 상호영향(相互影響)때문이며, 이러한 미시적(微視的) 균열성장거동(龜裂成長擧動)은 Elber의 crack closure model로 잘 설명(說明)될 수 있으나 피로균열성장해석방법(疲勞龜裂成長解析方法)으로는 불충분(不充分)하다. 반면 변동하중하(變動荷重下)에서의 피로균열성장해석방법(疲勞龜裂成長解析方法) 중(中) Wheeler의 retardation model은 간편하면서도 적합한 이론임을 알 수 있었다.

  • PDF

가공경화지수가 피로균열 지연거동에 끼치는 영향 (Effects of Strain Hardening Exponents on the Retardation of Fatigue Crack Propagation)

  • 김상철;강동명
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1193-1199
    • /
    • 1990
  • 본 연구에서는 가공경화지수 (n)가 서로 다른 몇가지 재료를 선택하고 과대하 중의 비 (%PL)를 달리하는 단일 과대하중 피로 시험을 행하여 재료의 가공경화지수가 피로 균열 진파의 지연거동에 미치는 영향과 아울러 균열닫힘현상과의 관계를 구명하였다.

알루미늄 합금 판재에서 예비압입에 의한 피로수명의 연장효과 분석 (Analysis of the Extension Effects of Fatigue Life by Pre-Indentation in Aluminum Alloy Plates)

  • 조환기;황정선
    • 항공우주시스템공학회지
    • /
    • 제1권1호
    • /
    • pp.45-52
    • /
    • 2007
  • This paper analyzed the extension effects of fatigue life and the application of pre-indentation in aircraft structural material such as aluminum alloys. The test specimen used the thin sheet of aluminum alloy with a single-edged notch. The experiments were conducted after making the pre-crack under a constant amplitude loading. As the fatigue life extension technique, the pre-indentation making an indent on the predicted path of crack propagation was applied. The work presented here discussed about a proper mathematical relation between crack growth rate and the range of stress intensity factor and about the generalization of crack growth mechanism with large retardation effect. A technique to enhance the applicability of pre-indentation if also mentioned.

  • PDF

CFRP로 보강한 하이브리드 복합재료의 비파괴검사법을 이용한 피로균열 지연의 연구 (A Study on Fatigue Crack Retardation Using NDT Test in a Hybrid Composite Material Reinforced with a CFRP)

  • 윤한기;박원조;허정원
    • Composites Research
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 1999
  • Al2024-T3 판재에 카본/에폭시(carbon/epoxy) 라미네이트를 섬유배열 방향 $0^{\circ}$/$90^{\circ}$$\pm$$45^{\circ}$로 2 Plies 보강하여 CPAL(Carbon Patched ALuminum alloy)재를 제작하고, 응력비 R=0.2, 0.5에서 피로균열전파 실험을 실시하였다. X-Ray와 초음파 C-Scan 장비를 이용하여 A/2024-T3 판재의 균열과 CFRP 라미네이트 박리 거동을 조사하여 피로균열 지연 거동과 지연기구(mechanism)를 연구하였다. A/2024-T3 시험편에 비해서 CPAL 시험편은 피로균열전파속도가 현저하게 지연되었으며, 지연 정도는 $0^{\circ}$/$90^{\circ}$ CPAL이 $\pm$$45^{\circ}$ CPAL 시험편보다 크고, 응력비 R=0.2에서 응력비 R=0.5보다 크게 나타났다. CPAL 시험편의 피로균열 지연 효과는 균열후방의 박리 및 비박리 CFRP 라미네이트가 A/2024-T3 판재의 균열열림(COD)을 감소시키는 균열브리징미케니즘(crack bridging medhanism) 때문에 발생함을 확인하였다.

  • PDF