• Title/Summary/Keyword: Crack growth direction

Search Result 144, Processing Time 0.029 seconds

The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響)

  • 박영조;김정규;신용승;김성민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1986
  • Fatigue surface crack growth was studied in 7075-T651 aluminum alloy plates subjected largely to bending loads. The surface crack length and its depth were measurement by the unloading elastic compliance method. The surface crack growth rate dc/dN, on the surface and da/dN, in the depth direction were obtained by the secant method. The stress intensity factor range .DELTA.K was computed by means of Newman and Raju equation. The aspect ratio a/c was presented in form of a/c=0.815-0.853(a/T). The effect of the stress ratio on the stable surface crack growth rates under increasing .DELTA.T is larger in lower .DELTA.K, while the relation between dc/dN, da/dN and the effective stress intensity factor range .DELTA.K$_{eff}$ is weakly dependent on the stress ratio.o.

A Study on the Anisotropy of Al 7075 Rolling Material in Fatigue Crack Growth Process (Al 7075 압연재의 피로균열 성장과정에서의 이방성에 관한 연구)

  • 최병기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.19-25
    • /
    • 1999
  • The research has extracted two kinds of specimen, one is rolling direction material(R-material) and the other rectangular of rolling direction(V-material), from Al alloy 7075 rolled. We have come to a conclusion by measuring crack propagation behavior with movement type microscope and Replica. 1) R-material shows 130% higher, approx. 39.2MPa in fatigue strength than V-material, approx. 29.4MPa. 2) In crack proportion, contrary to V-material growing directly toward specimen axis, R-material grows neared to shear direction. 3) The life proves that R-material is approx. 122% higher than V-material at 43.1MPa and approx. 135% higher at 47MPa. 4) The correlation between fatigue crack length and fracture life ratio applied to 'log(2a)=A+B ($N/N_f$)'equation shows inappropriate, because property value of Al alloy is low and the difference of chemical composition is high comparing with steel material.

  • PDF

Characteristic of Crack Growth and Progress on the Contact Fatigue (In a case of Metal) (접촉피로에 있어서 균열의 발생과 진전특성)

  • Yu, Seong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.62-68
    • /
    • 1997
  • In the first part of the paper, the crack growth process in rolling contact fatigue has been investigated on ring type plate specimens, in which crack growth is two dimensional and cracks are observed on the side surface of the specimens. The results have shown that cracks are initated from the contact surface in tensile mode in the direction approximately normal to the contact surface and after some short length of growth, shear mode growth occurs from the tip of the crack and it grows until the separation of the surface layer, namely flakung type failure, occurs. In the second part, mode U fatigue crack growth tests have been made by using an apparatus designed based on the concept that the subsurface fatigue crack growth in rolling contact fatigue is the mode U fatigue crack growth under the stress state where the tensile mode growth is suppressed by compression stress. The rest results have shown that the mode U fatigue crack growth occurs if the superposed compression stress is enough to suppress the tensile mode growth.

  • PDF

Thermoelastic Finite Element Analysis of Double horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼;채영훈
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.219-227
    • /
    • 2002
  • A linear elastic fracture mechanics analysis of double subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

Thermoelastic Finite Element Analysis of Multiple horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.50-58
    • /
    • 2000
  • A linear elastic fracture mechanics analysis of multiful subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was peformed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

  • PDF

A Study on the Electrical Characteristics of Photovoltaic Module Depending on Micro-Crack Patterns of Crystalline Silicon Solar Cell (결정질 태양전지의 Micro-crack 패턴에 따른 PV모듈의 전기적 특성에 관한 연구)

  • Song, Young-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.407-412
    • /
    • 2012
  • This study investigated the process of thermal-induced growth of micro-crack developed at the crystalline solar cell using EL image, determined the output characteristic according to the pattern of micro-crack, analyzed the I-V characteristic according to the pattern of crack growth, and predicted the output value using simulation. The purpose of this study was, therefore, to investigate the process of thermal-induced growth of micro-crack developed at the early stage of PV module completion using EL image, to analyze the resulting decrement of output and predict the output value using simulation. It was observed that the crack grew increasingly by the thermal condition, and accordingly the lowering of output was accelerated. The output values of crack patterns with various direction were predicted using simulation, resulting in close I-V curve with only around 4% of error rate. It is considered that it is possible to predict the electric characteristic of solar cell module using only pattern of micro-crack occurred at solar cell based on our results.

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

Analysis of Stress Intensity Factors for Interacting Two Growing Cracks (2개의 성장 균열들의 상호작용에 관한 응력확대계수 해석)

  • 박성완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.47-57
    • /
    • 2000
  • In this study, a fundamental approach to make clear the mechanism of the mutual interference and coalescence of stress fields in the vicinity of two crack tips on the process of their slow growth, using boundary element method. Automatic generation of quadratic discontinuous elements along both of the crack boundaries which can be defined by an arbitrary piece-wise straight geometry. The direction of the crack-extension increment is predicted by the maximum principal stress criterion, corrected to account for the discreteness of the crack extension. Along the computed direction, the crack is extended one increment. Automatic incremental crack-extension analysis with no remeshing, computation of the stress intensity factors by J-integral. Numerical stress intensity factors for two growing cracks in plane-homogeneous regions were determined.

  • PDF

A Study on the Behaviour of Plastic Deformation in Weld HAZ of Mild Steel (연강 용접열영향부의 소성변형거동에 관한 연구 1)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.38-45
    • /
    • 1989
  • In this study, in order to evaluate the shape and the size of the plastic zone at the notch tip before stable crack growth, a newly developed technique for plastic strain measurement, that is, the recrystallization-etching technique was applied to observe the intense strain zone at the notch tip of weld HAZ. 1) The recrystallized specimens showed that the amount of the intense strain zone, more than 20% plastic zone, was quantitatively observed as the plane strain state during the growth of the plastic zone. 2) The behavior of plastic deformation at midsection are different for parent and weld HAZ. In addition, the micro crack initiation occurs at midsection, parent and weld HAZ when the crack opening displacement(COD) value is .delta.$_{t}$=0.4mm. 3) The plastic zone for parent proceeds in the forward direction at notch tip and for weld HAZ in the right and left direction at the notch tip. 4) The relation between plastic strain energy(Wp) and COD(.delta.$_{t}$) depended on yield stress, gradient and plastic strain size.ize.

  • PDF