• Title/Summary/Keyword: Crack formation

Search Result 394, Processing Time 0.028 seconds

Study on corrosion fatigue of high strength steel (고장력강의 부식피로에 관한 연구)

  • 유헌일;천기정;택목양삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.32-44
    • /
    • 1983
  • In case of $K_{Imax}$ < $K_{Iscc}$, the corrosion fatigue of high strength steel in 0.1N $H_{2}$S $O_{4}$ solution and 3.5% salt water is as follows. 1. The fatigue life shortens in order of 3.5% salt water and 0.1N $H_{2}$S $o_{4}$ solution. 2. The fatigue crack growth rate in air is obtained as the following equation. (dc/dN)$_{atr}$=7.23*10$^{-6}$ (.DELTA. K)$^{2.23}$ 3. The corrosion fatigue crack growth rate in environment is divided into three regions, that is, First Region, Second Region and Third Region from the small cyclic stress intensity. 4. The formation rate of the active surface on metal is slower than the mechano-chemical reaction rate in First Region. The crack growth rate depends on time and the cyclic stress intensity and is expressed as the following equation. (dc/dN)$_{I}$=C(/DELTA. K)$^{\delta}$ 5. The formation rate of the active surface is faster than the mechano-chemical reaction rate in Second Region and the synergistic effect by stress and corrosion becomes slow. In case the fatigue load is large, we have the critical crack growth rate which is not related to the cyclic stress intensity. 6. The corrosion crack growth rate by the mechano-chemical reaction is the same in $H_{2}$S $O_{4}$ solution and salt water, so Hydrogen accelerates the crack growth. 7. The environment has no effect on the corrosion fatigue crack growth rate in Third Region. 8. In First Region and Second Region, dimple is observed on the fatigue fracture surface in 0.1N $H_{2}$S $O_{4}$ solution. 9. The striation is observed in any environment as in air in Third Region and its interval approximately coincide with the crack growth rate.ate.e.e.

  • PDF

Finite Element Simulation of Surface Pitting due to Contact Fatigue (접촉피로에 의한 표면피팅의 유한요소 시뮬레이션)

  • Rhee, Hwan-Woo;Kim, Sung-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.80-88
    • /
    • 2010
  • A simple computational model for modeling of subsurface crack growth under cyclic contact loading is presented. In this model, it is assumed that the initial fatigue crack will initiate in the region of the maximum equivalent stress at certain depth under the contacting surface. The position and magnitude of the maximum equivalent stress are determined by using the equivalent contact model, which is based on the Hertzian contact conditions with frictional forces. The virtual crack extension method is used for simulation of the fatigue crack growth from the initial crack up to the formation of the surface pit due to contact fatigue. The relationships between the stress intensity factor and crack length are then determined for various combinations of equivalent contact radii and loadings.

Effect of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity Al2O3 Using Micro-lithographic Technique - I. Formation of Crack-like Pore and Its Morphological Evolution (Ion Implantation으로 Ca를 첨가한 단결정 Al2O3의 Crack-like Pore의 Healing 거동 - I. Crack-like Pore의 형성과 Morphological Evolution)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.834-842
    • /
    • 1997
  • Controlled Ca impurity implanted inner crack-like pore in the high purity alumina single crystal, sapphire, had been created by micro-fabrication technique, which includes ion implantation, photo-lithography, Ar ion milling, and hot press technique. The morphological change and the healing of cracklike pore in Ca doped high purity single crystal alumina, sapphire, during high temperature heat treatment in vacuum were observed using optical microscopy. The dot-like surface roughening was developed and hexagon like crystal appeared on inner surface of crack-like pore after heat treatment. Bar type crystals, probably CaO.6Al2O3, were observed on the inner surface after 1 hour heat treatment at 1, 50$0^{\circ}C$, but this bar type crystal disappeared after 1 hour heat treatment at 1, $600^{\circ}C$. This disappearance means that there should be a little increase of Ca solubility limit to alumina at this temperatures.

  • PDF

The Numerical Analysis for the Surface Crack Behavior in the Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 표면균열거동에 관한 수치해석)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • A fuel cell is an energy conversion device that converts a chemical energy directly into an electrical energy and has higher energy efficiency than an internal combustion engine, but solid oxide fuel cell (SOFC) consisting of brittle ceramic material remains as a major issue regarding the mechanical properties as the crack formation and propagation. In this study, the stress distribution and crack behavior around the crack tip were evaluated, due to investigated the effects of the surface crack at the operating condition of high temperature. As a result, the difference of the generated stress was insignificant at operating conditions of high temperature according to the surface crack length changes. This is because, the high stiffness interconnect has a closed structure to suppress cell deformation about thermal expansion. The stress intensity factor ratio $K_{II}/K_I$ increased as the crack depth increased, at that time the effect of $K_{II}$ is larger than that of $K_I$. Also the maximum stress intensity factor increased as the crack depth increased, but the location of crack was generated at the electrolyte/anode interface, not at the crack tip.

Fatigue Crack Growth Behavior of Austenite Stainless Steel in PWR Water Conditions (모사원전환경에서 오스테나이트 스테인리스강의 피로균열성장 평가)

  • Min, Ki-Deuk;Lee, Bong-Sang;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.183-190
    • /
    • 2015
  • Fatigue crack growth rate tests were conducted as a function of temperature, dissolved hydrogen (DH) level, and frequency in a simulated PWR environment. Fatigue crack growth rates increased slightly with increasing temperature in air. However, the fatigue crack growth rate did not change with increasing temperature in PWR water conditions. The DH levels did not affect the measured crack growth rate under the given test conditions. At $316^{\circ}C$, oxides were observed on the fatigue crack surface, where the size of the oxide particles was about $0.2{\mu}m$ at 5 ppb. Fatigue crack growth rate increased slightly with decreasing frequency within the frequency range of 0.1 Hz and 10 Hz in PWR water conditions; however, crack growth rate increased considerably at 0.01 Hz. The decrease of the fatigue crack growth rate in PWR water condition is attributed to crack closure resulting from the formation of oxides near the crack tips at a rather fast loading frequency of 10 Hz.

The Effects of Boundary Condition in Cone Crack Formation of Soda-lime Glass by Ball Impact (볼 충격을 받는 유리의 콘크랙형성에 대한 경계조건의 영향)

  • Kim, Moon-Saeng;Heo, Jin;Lee, Hyeon-Chul;Kim, Ho-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.981-986
    • /
    • 2003
  • In order to investigate the possibility of processing of brittle material by ball impact, the effects of boundary conditions about impact damage of soda-lime glass by small spheres were evaluated experimentally. It was investigated that crack appearance developed in soda-lime glass with boundary conditions of without sealing, single-sealing and double-sealing by impact velocity. The double-sealing was most effective in the development of perfect cone than other boundary condition. In case of double-sealing condition, PVC and Polyurethane sealing were more effective in producing a perfect cone formation than other sealing materials. The impact velocity range over which perfect cones were formed was influenced by both the contact area and diameter of impact particle.

A Study on the Effect and Formation of Shear Lip for Al 2024-T3 Materials (Al 2024-T3재에 있어서 Shear Lip의 생성과 그 영향에 관한 연구)

  • 최병기;오환교
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.41-46
    • /
    • 1993
  • This Paper aims to examine the effect of shear lip formation from cross-sections on fatigue crack propagation rate in order to study the fatigue fracture behavior of the high strength aluminum material (Al 2024-T3). The following tests were achieved from this research. 1. As a result of depressing shear lip artificially by adding a side groove to a specimen, it is shown that the propagation rate of fatigue crack is faster than that of general specimen. 2. Through the two-step load test, the phenomenon that the shear lip decreases In the part of changed load gets observed. Consequently It Is shown that the crack propagation rate gets faster.

  • PDF

Fabrication of Chromium-based Double Layered Deposit (크롬계 이중도금층 제조 및 특성평가)

  • Park, Sang-Eon;Kim, Dong-Su;Kim, Man;Jang, Do-Yeon;Gwon, Sik-Cheol
    • 연구논문집
    • /
    • s.31
    • /
    • pp.127-133
    • /
    • 2001
  • In chromium electrodeposition, crack is inevitably accompanied by chromium layer. Behavior of crack formation and crack density were different from the plating conditions such as current density, temperature, waveform of applied current and so on. And cracks have an influence on the corrosion resistance of chromium deposit, because corrosion occurs through the network of cracks between deposit and substrate. Therefore, many researches have been achieved in order to remove the cracks in chromium deposit. Formation of double layers, Cr/Cr and Ni/Cr were investigated to increase corrosion resistance of chromium deposit in this study. As pretreatment prior to outer chromium coating, acid pickling and current control method were examined. Cracks in cross-section of each sample were observed with SEM and CASS(Copper modified acetic acid salt spray) test was performed to evaluate corrosion resistance. It was found that corrosion resistance of Cr/Cr and Ni/Cr double layers were superior to Cr or Ni single layer from the results of CASS test.

  • PDF

The Effects of Sealing Materials in Cone Crack Formation of Soda-lime Glass by Ball Impact (볼 충격을 받는 유리의 콘크랙형성에 대한 실링재료의 영향)

  • Kim, Moon-Saeng;Heo, Jin;Lee, Hyun-Chul;Kim, Ho-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.156-163
    • /
    • 2003
  • In order to investigate the possibility of punching process of brittle material by ball impact, the effects of sealing materials about impact damage of soda-lime glass by small spheres were evaluated experimentally. The using of sealing materials in the development of perfect cone crack was more effective than no using of sealing materials. At the sealing materials condition, in the case of 5mm-thick specimen, Copper and PMMA sealing were more effective in producing a perfect cone formation than the other sealing materials. And in the case of 8mm-thick specimen, Aluminum sealing was most effective in producing a perfect cone formation. The impact velocity range over which perfect cones were formed was influenced by both the thickness of specimen and sealing materials. By a proper selection of sealing materials, the application fur industrial technology for hole (or nozzle) punching process of brittle materials is expected.

Effect of Oxidation of Ni on the Microstructure of Ni/YSZ Anode and Crack Formation in YSZ Electrolyte Layer for SOFC (Ni의 산화가 고체산화물 연료전지용 Ni/YSZ 연료극의 미세조직과 전해질의 균열에 미치는 영향)

  • Lim, Jun-Sil;Choi, Jong-Joon;Kwon, Oh-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.805-811
    • /
    • 2006
  • The microstructural changes in Ni/YSZ anode substrate and crack formation during Ni oxidation were investigated. The composition of as-sintered anodes was 56 wt% NiO+44 wt% YSZ and that of electrolyte was 8 mol% yttria. After complete reduction, specimens were oxidized in $N_2$ + air at $600\sim800^{\circ}C$. Oxygen partial pressure was controlled in between 0.05 atm and 0.2 atm $O_2$. When the anode was oxidized, at higher than $690^{\circ}C$, three layers were formed in the specimens. The first was fully oxidized layer(NiO/YSZ), the second was a mixed layer and the third, near-intact layer. Under $640^{\circ}C$ such distinctive layers were not observed. Cracks formed at electrolyte layer when weight gain attained at $65\sim75%$ of the total gain due to complete oxidation despite of different oxidation temperature and oxygen partial pressure.