DOI QR코드

DOI QR Code

Fatigue Crack Growth Behavior of Austenite Stainless Steel in PWR Water Conditions

모사원전환경에서 오스테나이트 스테인리스강의 피로균열성장 평가

  • Min, Ki-Deuk (Hanyang University, Division of materials science and engineering) ;
  • Lee, Bong-Sang (Korea Atomic Energy Research Institute, Nuclear Materials Research Division) ;
  • Kim, Seon-Jin (Hanyang University, Division of materials science and engineering)
  • 민기득 (한양대학교 신소재공학부) ;
  • 이봉상 (한국원자력연구원 재료안전연구부) ;
  • 김선진 (한양대학교 신소재공학부)
  • Received : 2015.02.13
  • Accepted : 2015.03.29
  • Published : 2015.04.27

Abstract

Fatigue crack growth rate tests were conducted as a function of temperature, dissolved hydrogen (DH) level, and frequency in a simulated PWR environment. Fatigue crack growth rates increased slightly with increasing temperature in air. However, the fatigue crack growth rate did not change with increasing temperature in PWR water conditions. The DH levels did not affect the measured crack growth rate under the given test conditions. At $316^{\circ}C$, oxides were observed on the fatigue crack surface, where the size of the oxide particles was about $0.2{\mu}m$ at 5 ppb. Fatigue crack growth rate increased slightly with decreasing frequency within the frequency range of 0.1 Hz and 10 Hz in PWR water conditions; however, crack growth rate increased considerably at 0.01 Hz. The decrease of the fatigue crack growth rate in PWR water condition is attributed to crack closure resulting from the formation of oxides near the crack tips at a rather fast loading frequency of 10 Hz.

Keywords

References

  1. P. Marshall, Austenitic Stainless steels, Microstructure and Properties, Elsevier, London (1984).
  2. O. K. Chopar and W. J. Shack, NUREG/CR-6909, ANL-06/08, U.S. NRC (2007).
  3. H. Cho, B. K. Kim, I. S. Kim, C. Jang and D. Jung, Adv. Mater. Res., 26-28, 1121 (2007). https://doi.org/10.4028/www.scientific.net/AMR.26-28.1121
  4. H. Cho, Ph. D. Thesis, KAIST, Daejeon (2007).
  5. Jean L. Smith and O. K. Chopar, ANL/ET/CP-98400, U.S. NRC (1999).
  6. Jean L. Smith, O. K. Chopra, ASME/JSME Joint Pressure vessel and piping Conference, San Diego (1998).
  7. O. K. Chopra, NUREG/CR-6787, ANL-01/25, U.S. NRC (2002).
  8. ASTM E 8-05, Annual Book of ASTM Standards, ASTM International, USA (2011).
  9. ASTM E 647-05, Annual Book of ASTM Standards, ASTM International, USA (2005).
  10. S. G. Hong and S. B. Lee, J. Kor. Inst. Met. Mater., 43, 87 (2005).
  11. Sarata Cisse, Lydia Laffont, Benoit Tanguy, Marie-Christine Lafont and Eric Nadrieu, Corrosion Science, 56, 209 (2012). https://doi.org/10.1016/j.corsci.2011.12.007
  12. J. F. Moulder and Eden Prairie, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc, USA (1995).
  13. Zahida Begum, A. Poonguzhali, Ranita Basu, C. Sudha, H. Shaikh and R. V. Subba Rao, Corrosion Science, 53, 1424 (2011). https://doi.org/10.1016/j.corsci.2011.01.003
  14. S. Suresh, G. F. Zamiski and R. O. Ritchie, Meta. Tran. A, 12A, 1435 (1981).
  15. J. M. Lee, J. H. Yoon, M. W. Kim, B. S. Lee and S. I. Kwun, J. Kor. Inst. Met. Mater. 45, 593 (2007).
  16. A. Puskar and L. Varkoly, Fatigue Fract. Eng. Mater. Struct. 9, 143 (1986). https://doi.org/10.1111/j.1460-2695.1986.tb00442.x
  17. G. R. Irwin, Pro. 7th Sagamore Ordance Mater. Res. Conf. (1960).
  18. Masahiro, Fartigue Crack, intervision, Seoul (2006).
  19. Newman and Elber, Mechanics of fatigue crack closure, ASTM, Philadelphia (1988).
  20. Z. Mei and J. W. Morris, Meta. Tran. A, 21A, 3137 (1990).
  21. C. Bathias, A. Pineau, J. Pluvinage and P. Rubbe, Adv. Res. Frac. Mater., 1283 (1978).
  22. Hans-Peter Seifert and Stefan Ritter, PSI Bericht Nr. 09-03, PSI, Switzerland (2009).
  23. D. A. Jones, Principles and Prevention of Corrosion, Prentice Hall, USA (1999).
  24. O. K. Chopra, W. J. Shack, NUREG/CR-6717, ANL-00/ 27, U.S. NRC (2001).
  25. O. K. Chopra, NUREG/CR-6787, ANL-01/25, U.S. NRC (2002).
  26. E. Herms, J. M. Olive and M. Puiggali, Mater. Sci. Eng. A, 272, 279 (1999). https://doi.org/10.1016/S0921-5093(99)00319-6
  27. Y. Murakami and S. Mastsuoka, Eng. Fract. Mech., 77, 1926 (2010). https://doi.org/10.1016/j.engfracmech.2010.04.012
  28. H. Kobayashi, H. Tsuji, and K. D. Park, Int. J. Automotive Tech., 460 (1990).
  29. T. Kanezaki and C. Narazak, Int. J. Hydrogen Energ., 33, 2604 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.067
  30. G. Lothongkum, P. Wongpanya, S. Morito, T. Furuhara and T. Maki, Corrosion. Sci., 48, 137 (2006). https://doi.org/10.1016/j.corsci.2004.11.017
  31. Y. S. Kim, J. Corrosion Sci. Soc. Korea, 21, 189 (1992).
  32. R. C. Newman, T. Shahrabi, Corrosion. Sci., 27, 827 (1987). https://doi.org/10.1016/0010-938X(87)90040-0
  33. Xiluo, Ruitang, Chongsheng Long, Zhi Miao, Zhi Miao, Qian Peng and Cong Li, Nucl. Eng. Tech., 40, 147 (2007).