• Title/Summary/Keyword: Crack direction

Search Result 546, Processing Time 0.023 seconds

Investigation on the Conservation Environment for the Shelter of Stone Cultural Properties (I)-Focused on the Standing Stone Buddhist Triad in Bae-ri, Gyeongju and Rock-carved Triad Buddha in Seosan (석조문화재 보호각의 보존환경 연구(I)-경주배리석불입상, 서산마애삼존불상을 중심으로)

  • Hong, Jung-Ki;Eom, Doo-Sung;Chung, Young-Jae;Masayuki Morii
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.141-164
    • /
    • 2005
  • Most of the stone cultural properties is exposed to the weathering factor(rain, windetc.), so the shelter is constructed for reduction of its direct effect. But the shelter is indicated some problems that inharmoniousness of the surroundings, in section disturbance for insufficiency of light, the loss about the value of cultural properties and so on. So we have investigated on environmental condition (temperature, relative humidity, wind etc.) at the Standing Stone Buddhist Triad in Bae-ri, Gyeongju and Rock-carved Triad Buddha in Seosan because check the effect of the shelter. As the result, the Standing Stone Buddhist Triad in Bae-ri, Gyeongju is located a pine wood and a lot of bamboo grow naturally in nearing. Environmental difference on inside and outside of the shelter is not found because opened on all sides. But there is so dim for the direction of the sunlight that can't see the Standing Stone Buddhist. The base rock of Rock-carved Triad Buddha in Seosan well develop with crack and break, and the vegetation(trees, moss, lichen etc.) grow naturally in surroundings. Environmental difference on inside and outside of the shelter is found because closed on all sides and opened the front gate only inspection time. Inside of the shelter was too calm(air-velocity not detected) and humid(over 75%RH). Also the surface is occurred the dew(at 2-4 pm) and the efflorescence for effect of the water(rain, dew etc.). Besides the head of the central Buddhist is so dangerous for crack.

  • PDF

Fracture Characteristics of the Resistance Spot Welded Joints by Acoustic Emission (음향방출법에 의한 저항 점용접부의 파괴특성에 대한 연구)

  • Jo, Dae-Hee;Rhee, Zhang-Kyu;Park, Sung-Oan;Kim, Bong-Gag;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.14-22
    • /
    • 2007
  • In this paper, the acoustic emission(AE) behaviors were investigated with single-and 2-spot resistance spot welded SPCC specimens. Test specimens were welded horizontally and/or vertically according to the rolling direction of base netal in 2-spot welding. In the case of 2-spot welding, when tensile-shear test has below amplitudes: crack initiation $50{\sim}60dB;$ tear fracture $40{\sim}50dB$. And when cross tensile test has below amplitudes: early stage $75{\sim}85dB;$ yielding point $65{\sim}75dB;$ post yielding $40{\sim}60dB;$ plug fracture $70{\sim}80dB\;or\;90{\sim}100dB$. Also, from the b-value that is slope of AE amplitude, we knew that there are lots of low amplitudes if b-value is big(i.e., tensile-shear $specimen{\rightarrow}tear$ fracture or shear fracture), and there are lots of high amplitudes if b-value is small(i.e.. cross tensile $specimen{\rightarrow}plug$ fracture). As the results of fiacture mechanism analyses through AE amplitude distributions, change of the b-value represented fracture patterns of materials. Correspondingly, low amplitude signals appeared in crack initiation, and high amplitude signals appeared in base metal fracture. We confirmed that these amplitude distributions represented the change or degradation of materials.

Cracking of Rice Caused by Moisture Migration during Storage (쌀의 저장중 수분이동에 의한 균열현상에 관한 연구)

  • Mok, Chul-Kyoon;Lee, Sang-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.164-170
    • /
    • 1999
  • Cracking of rice caused by moisture migration during storage under different relative humidity conditions was investigated for the establishment of safe storage condition of rice. Rice was cracked when a large difference in equilibrium relative humidity $({\Delta}ERH)$ between the rice and the environment was present. External and internal cracks were generated as the results of moisture desorption and adsorption, respectively. The external cracks by moisture desorption generated in all directions and shaped irregularly, while the internal cracks by moisture adsorption did in radial direction and showed a typical shape. The cracking trend could be analyzed by the Weibull function, and the cracking constant increased with ${\Delta}ERH$. The frequency of cracked rice increased linearly with In $({\Delta}ERH)$. The critical crack-inducing ${\Delta}ERH$ was $11.3{\sim}16.4%$ during desorption and $10.8{\sim}17.1%$ during adsorption. A diagram for the safe storage of rice was developed with respect to the initial moisture content and the water activity of rice.

  • PDF

Thermal Damage Characterization of Silicon Wafer Subjected to CW Laser Beam (CW 레이저 조사에 의한 실리콘 웨이퍼의 손상 평가)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1241-1248
    • /
    • 2012
  • The objective of this study is to evaluate the thermal damage characterization of a silicon wafer subjected to a CW laser beam. The variation in temperature and stress during laser beam irradiation has been predicted using a three-dimensional numerical model. The simulation results indicate that the specimen might crack when a 93-$W/cm^2$ laser beam is irradiated on the silicon wafer, and surface melting can occur when a 186-$W/cm^2$ laser beam is irradiated on the silicon wafer. In experiments, straight cracks in the [110] direction were observed for a laser irradiance exceeding 102 $W/cm^2$. Furthermore, surface melting was observed for a laser irradiance exceeding 140 $W/cm^2$. The irradiance for surface melting is less than that in the simulation results because multiple reflections and absorption of the laser beam might occur on the surface cracks, increasing the absorbance of the laser beam.

Field Application of Hydraulic Rock Splitting Technique to Biotite Granite (흑운모화강암 지역에 대한 수압암반절개기술의 현장 적용)

  • Park, Jongoh;Lee, Dal-Heui;Woo, Ik
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.263-270
    • /
    • 2017
  • Hydraulic rock splitting is a technique which leads to failure of rockmass by means of water injection with a pressure higher than the tensile strength of rockmass, using straddle packer installed in boreholes drilled from free surface. Field tests were conducted in this study for several slopes of biotite granite according to various designs for borehole layout and water injection. Test results showed that new cracks were generated to connect to adjacent holes or that pre-existed cracks were propagated by injection, finally leading to failure. In particular, this study suggests the possibility of controlling the direction of generated cracks with guide slot, since new cracks were generated parallel to the guide slots carved on a borehole wall before injection. Various types of borehole layout and injection methods should be further developed for the practical uses, considering the factors influencing on crack generation.

Simplified Analysis and Design with Finite Element for Reinforced Concrete Shear Walls Using Limit State Equations (한계상태방정식에 의한 R/C 전단벽의 유한요소 간편 해석과 설계)

  • 박문호;조창근;이승기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • The present study is to investigate the ultimate behavior and limit state design of 2-I) R/C structures, with the changing of crack direction, and the yielding of the reinforcing steel bars, and Is to introduce an algorithm for the limit state design and analysis of 2-D R/C structures, directly from the finite element model. For the design of reinforcement in concrete the limit state design equation is incorporated into finite element algorithm to be based on the pointwise elemental ultimate behavior. It is also introduced a simplified nonlinear analysis algorithm for stress-strain relationship of R/C plane stress problem considering the cracking and its rotation in concrete and the yielding of the reinforcing steel bar. The algorithm is incorporated into the nonlinear finite element analysis. The analysis model is compared with the experimental model of R/C shear wall. In a simple design example for a shear wall, the required reinforcement ratios in each finite element is obtained from the limit state design equations.

Fatigue Fracture Analysis of Curved Pipes Under Cyclic Loading (반복 하중에 의한 곡관의 피로 균열 해석)

  • Jang, Heung Woon;Jung, Jae-Wook;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.363-368
    • /
    • 2016
  • In this study, we numerically analyze fatigue cracks of curved pipes under cyclic loadings. Numerical models of the curved pipes are developed. The models are verified with the experimental results in terms of fatigue lives and development process of the fatigue cracks. Erosion technique is applied to the solid elements in order to describe shapes of the fatigue cracks and estimate the fatigue lives. Also, development of the fatigue cracks is described by allocating sufficient number of solid elements in the radial direction. Fatigue lives and shapes of the crack resulting from numerical analyses show good agreement with those of the experiment considering ${\pm}100mm$ displacement. In addition, estimation of the fatigue life caused by displacement with different magnitude is conducted. We expect that the model can be applied to understand the relation between fatigue lives and characteristics of pipes or loadings.

CO2 Laser Scribing Process of Soda Lime Glass (소다석회유리의 CO2 레이저 스크라이빙 가공)

  • Kang, Seung-Gu;Shin, Joong-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-81
    • /
    • 2019
  • This study reports the CW $CO_2$ laser scribing of soda lime glass. In this study, scribing experiments are carried out at different laser powers, scan speeds, and focal positions to investigate the effect of the process parameters on the interaction characteristics between a laser beam and glass. In particular, the interaction characteristics are analyzed and described with the input laser energy per unit length. According to the experimental results, the damage threshold for the glass surface was found to exist between 0.072 and 0.08 J/mm. The input laser energy in this region induced partial melting of the surface and grain-shaped cracks. These cracks tended to increase as the input laser energy increased. At the laser input energy larger than 1 J/mm, a huge crack propagating along the scan direction was produced, and the volume below the scribed area was fully melted. The growth of this crack finally resulted in the complete cutting of the glass at the input laser energy above 8 J/mm. It was found that both the width and depth of the scribed line increased with increasing input laser energy. For the beam focusing at the rear surface, the width of the scribed line varied irregularly. This could be ascribed to the increased asymmetry of the beam intensity distribution when the laser beam was focused at the rear surface. Under this condition, a large burr was only produced on one side of the scribed line.

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.

Computer Simulation of Izod Impact Test for Impact Modifier Reinforced Nylon6 (충격보강제가 포함된 나일론 6에서 Izod 충격시험의 컴퓨터 모사)

  • Park, Yohan;Lyu, Min-Young;Paul, D.R.
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.172-179
    • /
    • 2013
  • Impact modifier reinforced polymers are frequently used. In this study, Izod impact test has been simulated to analyze the mechanism of impact reinforcement of Nylon6 which contains impact modifier. The modeling of rubber particles added to Nylon6 as an impact modifier has been attempted. Based on the modeling, simulation of Izod impact test has been performed to observe the distribution and direction of stress at the cross-section of impact specimen. Three computer simulation models for Nylon6 were investigated. Those were without impact modifier, containing impact modifier without surface treatment, and containing impact modifier with surface treatment in the Nylon6. Simulation results showed that the stress which originated at the notch surface propergated to the inside of specimen round a impact modifier. In addition to that, impact modifier reinforced Nylon6 specimen showed low stress ditribution in the cross-section specially at notch surface. Principal stress in perpendicular direction to crack was also lowered in impact modifier reinforced Nylon6. These enhanced impact resistance reduced and crack propergations. Through this study it was realized that the computer simulation can be utilized to investigate the property enhacement of composite materials.