• 제목/요약/키워드: Crack coefficient

검색결과 294건 처리시간 0.024초

초기분말의 결정상이 $Al_2O_3$를 소결 조제로한 고온가압 SiC 세라믹스의 기계적 특성에 미치는 영향 (Effect of Starting Crystallographic Phase on the Mechanical Properties of Hot-Pressed SiC Ceramics)

  • 정동익;강을손;최원봉;백용기
    • 한국세라믹학회지
    • /
    • 제29권3호
    • /
    • pp.232-240
    • /
    • 1992
  • Densification behavior, microstructural evolution, and mechanical properties of hot-pressed specimens using $\beta$-SiC and $\alpha$-SiC powder with Al2O3 additive were studied. Beta-SiC powder was fully densified as 205$0^{\circ}C$, but $\alpha$-SiC powder was at 210$0^{\circ}C$. The maximum flexural strength and the fracture toughness of the specimen hot-pressed using $\beta$-SiC powder were 681 MPa and 6.7 MPa{{{{ SQRT {m } }}, and thosevalues of specimen hot-pressed using $\alpha$-SiC powder were 452 MPa and 4.7 MPa{{{{ SQRT {m } }}, respectively. The strength superiority of specimen hot-pressed using $\beta$-SiC powder was due to the finer grain size, and higher density. The higher toughness of specimen hot-pressed using $\beta$-SiC powder than $\alpha$-SiC powder than $\alpha$-SiC powder was due to the crack deflection mechanism arised from the difference of thermal expansion coefficient between $\alpha$ and $\beta$-SiC phases which were co-existed in the sintered body.

  • PDF

$Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향 (The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite)

  • 이수영;임경호;전병세
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화 (Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method)

  • 이형욱;이근안;최석우;윤덕재;임성주;이용신
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

실리콘의 화학기계적 미세가공 특성 (Characterization of the Chemical Mechanical Micro Machining for Single Crystal Silicon)

  • 정상철;박준민;이현우;정해도
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.186-195
    • /
    • 2002
  • The mechanism of micro machining of reacted layer on silicon surface were proposed. The depth of reacted layer and the change of mechanical property were measured and analyzed. Depth of hydrated layer which is created on the surface of silicon by potassium hydrate was analyzed with SEM and XPS. The decrease of the micro victors hardness of silicon surface was shown with the increase of the concentration of potassium hydrate and the change of the dynamic friction coefficient by chemical reacted layer was measured due to the readiness of machining. The experiment of groove machining was done with 3-axis machine with constant load. With chemical mechanical micro machining the surface crack and burrs generated by both brittle and ductile micro machining were diminished. And the surface profile and groove depth was shown in accordance with the machining speed and reaction time with SEM and AFM.

식품분쇄용 세라믹 롤 재료 개발과 기계적 특성평가 (Development of Ceramic Roll Materials for Food Grinding Processing and Evaluation of Mechanical Behavior)

  • 강위수
    • Journal of Biosystems Engineering
    • /
    • 제26권1호
    • /
    • pp.47-56
    • /
    • 2001
  • In order to prevent the possibility of mixing of metal powder during food grinding processing with the metal roll mill this study was conducted to develope the materials of ceramics roll as a substitute of gray cast iron mill. Since the ceramics is brittle material and can be broken easily by a crack, it was needed to develope engineering ceramics roll materials with high elastic modulus and fracture toughness. Adding 0∼50 wt% Al$_2$O$_3$as densification additives to porcelain body material and forming the ceramics an different condition, mechanical properties were evaluated. The material structure’s densification process was analyzed by SEM and XRD. The evaluation of the mechanical properties of ceramics roll materials were compared and analyzed by non-destructive test using Young’s modulus and destructive test using 3-point bending strength and fracture toughness. The results showed several correlative results. Porcelain body material with 40 wt% Al$_2$O$_3$content heated at 1,200$\^{C}$ for 5h was high bulk density of 2.77, Young’s modulus of 118.4Gpa, 3-point bending strength of 137 MPa and fracture toughness of 2.88 MPa$.$m$\^$$\sfrac{1}{2}$/ . After analyzing the relationship between non-destructive test and destructive test, the coefficient of determination was more than 0.9. Therefore, the evaluation of non-destructive test by ultrasonic was turned out to be feasible in evaluating the mechanical properties of ceramics.

  • PDF

자기제 현수애자의 미세구조분석과 유전특성에 관한 연구 (A Study on the Microstructure Analysis and Dielectric Properties of Porcelain Suspension Insulators)

  • 김찬영;김주용;송일근;이병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권9호
    • /
    • pp.641-647
    • /
    • 1999
  • The paper provides the results of microstructure analysis and dielectricproperties of porcelain suspension insulators. The evaluation of characteristics was also made as a function of the manufacturers and fabricated years for the experimental specimens which had been used in real distribution lines. Even though the series A contained higher alumina contents than the series B, the densification of series A was lower than that of series B, resulting from much porosity. The microstructure investigation confirmed that series A had much porosity than series B. The series A contained quartz $(SiO_2),\; mullite\; (Al_6Si_2O_{13}),\; corundum(Al_2O_3),\; and cristobalite\; (SiO_2)$ phases. However, the series B had no cristobalite phase which had very high thermal expansion coefficient. Also, the tan$\delta$of series A was more abruptly increased than that of series B as increasing temperature. The elevated temperature may make much expansion of cristobalite crystal than other crystals, resulting in crack and puncture inside cap during the summer days.

  • PDF

반응 소결 SiC 소결체의 마찰마모특성에 미치는 첨가제 $Al_2O_3$$Fe_2O_3$ 의 영향 (Effect of $Al_2O_3$ and $Fe_2O_3$ Tribological Properties of Reaction Bonded SiC)

  • 백용혁;박홍균
    • 한국세라믹학회지
    • /
    • 제31권9호
    • /
    • pp.1069-1075
    • /
    • 1994
  • When ceramics are used as the parts of an engine and a machine, the tribological properties are very important. For the preparation of the resistance material for wear applications by the method of Reaction-Bonded Sintering, metal silicon and carbon black are mixed up into SiC powder, and Al2O3 and Fe2O3 are put as an additive. As the general properties, the bending strength and water absortion are measured in the normal temperature and the phase changies are investigated with XRD. The property of the resistance for wear applications is measured with the amount of friction and wear, friction coefficient and maximum asperties. And, the surface of wear is observed with SEM. With the results of this study, the optimal mol ratio of Si : C and the suitable quantity of the mixture of SiC are 7 : 3 and 40 wt%, respectively. In the case of the addition of Al2O3 (2 wt%), the resistance for friction and wear applications is prominent. The bending strength showed the highest peak when Al2O3 (4 wt%) and Fe2O3 (4 wt%) were added. The properties of friction and wear were related with the propagation velocity of crack rather than the bending strength.

  • PDF

Scratching Test에 의한 단결정 실리콘의 기계적 손상거동 (Mechanical Damage Behavior of Single Crystalline Silicon by Scratching Test)

  • 김현호;정성민;이홍림
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.104-108
    • /
    • 2003
  • 스크래칭 시험(scratching test)을 이용하여 단결정 실리콘의 수직하중에 대한 마찰계수, AE(Acoustic Emission) 신호와 긁힌 자취의 미세균열을 관찰하고 그 결정구조를 분석하였다. 스크래칭 시험은 하중인가속도(loading rate)를 100N/min으로 하고 스크래칭 속도(scratching speed)를 1, 3, 6, 10mm/min의 4가지로 하여 최대 30N이 될 때까지 행하였다. 그 결과, 수직하중 또는 스크래칭 속도가 증가할 때 마찰계수, AE, 균열밀도는 증가하는 경향을 나타내었다. 스크래칭, 자취에 대한 마이크로 라만 분광법을 이용한 결정구조 분석결과, 스크래칭 속도가 느린 조건에서 압력인가에 따른 실리콘의 다이아몬드 구조에서 다른 고압상의 구조로의 상전이 현상을 관찰할 수 있었다.

Bilinear elastodynamical models of cracked concrete beams

  • Pandey, Umesh Kumar;Benipal, Gurmail S.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.465-498
    • /
    • 2011
  • Concrete structures are generally cracked in flexural tension at working loads. Concrete beams with asymmetric section details and crack patterns exhibit different flexural rigidity depending upon the sense of the applied flexural moment. In this paper, three different models, having the same natural period, of such SDOF bilinear dynamical systems have been proposed. The Model-I and Model-II have constant damping coefficient, but the latter is characterized by two stiffness coefficients depending upon the sense of vibration amplitude. The Model-III, additionally, has two damping coefficients as well. In this paper, the dynamical response of Model-III to sinusoidal loading has been investigated and compared with that of Model-II studied earlier. It has been found that Model-III exhibits regular and irregular sub-harmonics, jump phenomena and strong sensitivity to initial conditions, forcing frequency, system period as well as the sense of peak sinusoidal force. The constant sustained load has been found to affect the natural period of the dynamical system. The predictions of Model-I have been compared with those of the approximate linear model adopted in present practice. The behaviour exhibited by different models of the SDOF cracked elastic concrete structures under working loads and the theoretical and practical implications of the approach followed have been critically evaluated.

강인한 힘 추적 제어기를 적용한 콘크리트 표면 추종 로봇 시스템 (Applying the Robust Force Tracking Controller to assist the Sealing Robot System on a Concrete Surface)

  • 조철주;임계영
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.389-396
    • /
    • 2016
  • The sealing robot must be able to calculate the slope of a contact surface for complete adherence of the sealing on different concrete shapes. After the slope is obtained, the robot will track on the surface of the concrete, but this process contains an error in the actual purpose of the force command. The reason this a phenomenon occurs, the non-linearity of the contact surface and the end-effector, is due to parasitic coupling. Errors like make it difficult to measure accurately the respective factors. Therefore, it is regarded as a disturbance that occurs when it follows the work surface it. In this paper, we selected the friction coefficient of the surface as a control factor and designed a compensator to reduce effects of disturbance. Finally, in view of the non-linearity of the end-effector of a robot to contact surfaces directly, we propose a robust force tracking controller in the finite range for managing disturbances that occur during the sealing.