• 제목/요약/키워드: Crack Resistant Performance

검색결과 28건 처리시간 0.025초

철근콘크리트 골조의 내진보강을 위한 신기술 개발 (Development of Now Technique for Earthquake-Resistant Retrofit in Reinforced Concrete Frame)

  • 하기주;신종학;최민권;조용태;조용태;이상목;이영범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.69-74
    • /
    • 2000
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, diagonal bracing system with or without steel frame. Experimental programs were carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFXB, RFXB-F), designed by the improvement of earthquake-resistant performance, were attained more load-carrying load-carrying capacity stable hysteretic behavior.

  • PDF

기존 철근콘크리트 골조의 리모델링을 위한 내진보강 기술의 구조성능 평가 및 개선 (Improvement and Evaluation of Earthquake Resistant Retrofit Techiques for Remodeling of Structural Performance in Existing Reinforced Concrete Frames)

  • 하기주;신종학;이상목
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.175-182
    • /
    • 2001
  • Five reinforced concrete frames were constructed and tested to study the structural performance of retrofitting effect reinforced concrete frame during and load revesals simultaneously. All specimens were modeling in one-third scale size. Experimental research was carried out to develop and evaluate the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, ALC panel, steel plate system with or without stiffener. Experimental programs wore carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFAR, RFSR, RFSR-S), designed by the improvement of earthquake-resistant performance, were attained more load-carrying capacity, energy dissipation capacity, and stable hysteretic behavior.

  • PDF

고강도 철근콘크리트 보-기둥 접합부의 내진성능 개선에 관한 실험적 연구 (Improvement of Earthquake-Resistant Performance of R/C Beam-Column Joint Constructed with High-Strength Concrete Subjected to Cyclic Loading)

  • 하기주;김진근;정란
    • 콘크리트학회지
    • /
    • 제4권1호
    • /
    • pp.135-145
    • /
    • 1992
  • 최근 철근콘크리트 건축물의 초고층화 추세에 따라 건축물의 설계시에 고강도의 건설재료, 부재단면의 축소, 직경이 큰 철근의 사용이 요구되고 있다. 이에 따라 구조물의 다른 부위에 비하여 접합부 영역의 응력 집중현상이 커지고, 철근콘크리트 구조물에 고강도 콘크리트를 적용하므로써 고정하중의 감소, 부재단면의 축소, 부재내력의 증대, 장 스팬 구조물의 축소 가능, 경제성의 향상을 가져올 수 있는 장점으로 인하여, 철근콘크리트 구조물에 고강도 콘크리트의 이용은 더욱 증대할 것으로 예상된다. 그러나 고강도콘크리트는 보통 콘크리트와 다른 특성, 특히 최대내력이후의 강도저하가 현저하고 파괴성상이 취성적인 성질을 지니고 있으므로 실제 구조물에 적용하기 앞서 구조물의 안전성 측면에서 부재 실험을 통하여 정확한 역학적 특성을 규명할 필요가 있다. 따라서 본 연구에서는 반복 주기하중을 받는 고강도 철근콘크리트 보-기둥 접합부의 거동을 파악하고, 접합부의 내진성능 개선을 위한 새로운 설계방법을 실제 초고층 철근콘크리트 건축물의 설계를 위한 기초 자료로 제시하였다.

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

철도차량 제동디스크 소재 열충격 실험에 대한 피로해석 (A Fatigue Analysis of Thermal Shock Test in Brake Disc Material for Railway)

  • 임충환;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.615-620
    • /
    • 2010
  • During braking of railway vehicles the repetitive thermal shock leads to thermal cracks on disc surface, and the lifetime of brake disc is dependent on the number of trimming works for removing these thermal cracks. Many tries for development of high heat resistant brake disc to extend the disc life and to warrant reliable braking performance has been continued. In present study, we carry out the computational fatigue analysis for thermal fatigue test in three candidate materials which were made to develop new high heat resistant material. Using FEM, we simulate thermal fatigue test in three candidate materials and conventional disc material. We then estimate the number of cycle to thermal crack initiation based on data from mechanical fatigue tests, and the results are compared with each material. For each material, the correction factor for $N_{f-40}$ which is the number of cycles when crack over $40{\mu}m$ was observed in thermal fatigue test is decided. From this study, we can verify the performance of thermal fatigue test system and suggest a qualitatively comparative method for heat resistance by FEM analysis of thermal shocking phenomenon.

  • PDF

CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가 (Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture)

  • 안중길;박기태;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2014
  • 강섬유는 콘크리트 부재의 인장영역에 효과적으로 작용하여 균열저항성을 높여주고 역학적 성능을 개선하는 것으로 알려져 있다. 본 연구는 팽창재를 사용한 강섬유 모르타르에 화학적 프리스트레싱을 인가하여 균열저항성 및 역학적 성능을 평가하는 연구이다. 이를 위해 시멘트 바인더의 10%를 치환한 CSA 팽장채가 사용되었으며 체적비 1%의 강섬유를 고려한 시멘트 모르타르 배합이 준비되었다. 기본적인 역학적인 성능평가 외에 노치를 가진 보를 제조하여 초기균열하중 및 파괴에너지를 평가하였다. 실험결과 강섬유와 CSA 팽창재를 혼입한 모르타르에서는 보통 강섬유 모르타르에 비하여 평균 1.75배의 균열저항성 하중이 증가하였으며, 파괴에너지 역시 1.41~1.53배 증가하였다. 최적의 강섬유 체적비와 팽창재의 혼입이 고려된다면 강섬유의 내부 화학적 프리스트레싱을 가진 복합재는 다양한 부재에 사용될 수 있으며, 외부하중에 효과적인 균열저감 기법으로 사용할 수 있다.

Study on the local damage of SFRC with different fraction under contact blast loading

  • Zhang, Yongliang;Zhao, Kai;Li, Yongchi;Gu, Jincai;Ye, Zhongbao;Ma, Jian
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.63-70
    • /
    • 2018
  • The steel fiber reinforced concrete (SFRC) shows better performance under dynamic loading than conventional concrete in virtue of its good ductility. In this paper, a series of quasi-static experiments were carried out on the SFRC with volume fractions from 0 to 6%. The compressive strength increases by 38% while the tension strength increases by 106% when the fraction is 6.0%. The contact explosion tests were also performed on the ${\Phi}40{\times}6cm$ circular SFRC slabs of different volume fractions with 20 g RDX charges placed on their surfaces. The volume of spalling pit decreases rapidly with the increase of steel fiber fraction with a decline of 80% when the fraction is 6%, which is same as the crack density. Based on the experimental results, the fitting formulae are given, which can be used to predict individually the change tendencies of the blast crater volume, the spalling pit volume and the crack density in slabs with the increase of the steel fiber fraction. The new formulae of the thickness of damage region are established, whose predictions agree well with our test results and others. This is of great practical significance for experimental investigations and engineering applications.

철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선 (Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame)

  • 신종학;하기주;최민권;전하석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF

철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 내진성능 평가 및 개선 (Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame)

  • 신종학;하기주;이희종
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.131-139
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of RC frame structures with masonry infilled wall, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame(IFWB-1~3), cumulated energy dissipation capacities were increased by 1.35~1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame.

  • PDF

철근콘크리트 전단벽의 접합방식과 대각보강에 따른 내진성능 평가 및 개선 (Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear wall with Connection Types and Diagonal Reinforcement)

  • 신종학;하기주;안준석;주정준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.139-147
    • /
    • 1999
  • Six reinforced concrete shear wall, constructured with fully rigid, slit, and infilled types, were tested under both vertical and cyclic loadings. Experimental programs were carried out to evaluate the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility, under load reversals. All the specimens were modeled in one-third scale size. Based on the test results, the following conclusions can be made. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crushing due to slippage prevention of boundary region and reduction of diagonal tension rathar than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by l.14 times and l.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF