• Title/Summary/Keyword: Crack Resistant Performance

Search Result 28, Processing Time 0.021 seconds

Development of Now Technique for Earthquake-Resistant Retrofit in Reinforced Concrete Frame (철근콘크리트 골조의 내진보강을 위한 신기술 개발)

  • 하기주;신종학;최민권;조용태;조용태;이상목;이영범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.69-74
    • /
    • 2000
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, diagonal bracing system with or without steel frame. Experimental programs were carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFXB, RFXB-F), designed by the improvement of earthquake-resistant performance, were attained more load-carrying load-carrying capacity stable hysteretic behavior.

  • PDF

Improvement and Evaluation of Earthquake Resistant Retrofit Techiques for Remodeling of Structural Performance in Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 리모델링을 위한 내진보강 기술의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Lee, Sang-Mog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.175-182
    • /
    • 2001
  • Five reinforced concrete frames were constructed and tested to study the structural performance of retrofitting effect reinforced concrete frame during and load revesals simultaneously. All specimens were modeling in one-third scale size. Experimental research was carried out to develop and evaluate the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, ALC panel, steel plate system with or without stiffener. Experimental programs wore carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFAR, RFSR, RFSR-S), designed by the improvement of earthquake-resistant performance, were attained more load-carrying capacity, energy dissipation capacity, and stable hysteretic behavior.

  • PDF

Improvement of Earthquake-Resistant Performance of R/C Beam-Column Joint Constructed with High-Strength Concrete Subjected to Cyclic Loading (고강도 철근콘크리트 보-기둥 접합부의 내진성능 개선에 관한 실험적 연구)

  • Ha, Gee-Joo;Kim, Jin-Keun;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.135-145
    • /
    • 1992
  • With the increasing tendency to construct high rise reinforced concrete building~i, it is required to use high strength materIals, smaller member sections, and larger reinforcing bars, I t is generally recognized that under severe seismic loads beam column jomts may become more critical structural components than other structural elements. In a ductile momentresistmg reinforced concrete frame, the connection of bearncolumn must be capable of resistll1g the large lateral forces caused by seismic actions, The purpose of this experimental study is to evaluate and ll1vestigate the earthquake resistant perform ance of beam-colurrm subassemblies constructed with high-strength concrete cast by the concrete of com¬pressive strength of 700kg / cm2 subjected to reversed cyclic loadings. New approaches for moving the plastic hinging zone away from the column face and preventing the di¬agonal crack in the joint region are adopted to advance the earthquake-resistant performance of beam-column subassemblies using high-strengh concrete under severe earthquake-type loading. Exper¬imental results indicate that the modified new details which are introduced by intermediate reinforcement in the beam over a specific beam length adjacent to the joint are able to attain the stable hysteretic behavior and the enhancement of earthquake-resistant performance. Keywords: high strength concrete: beam-column Joints; seirnic loads(reversed cyclic loading) : earth¬quake-resistant performance; plastic hinge zone: diagonal crack: intermediate reinforce¬ment ; closed strirrup: hysteretic behavior: enhancement .

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

A Fatigue Analysis of Thermal Shock Test in Brake Disc Material for Railway (철도차량 제동디스크 소재 열충격 실험에 대한 피로해석)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.615-620
    • /
    • 2010
  • During braking of railway vehicles the repetitive thermal shock leads to thermal cracks on disc surface, and the lifetime of brake disc is dependent on the number of trimming works for removing these thermal cracks. Many tries for development of high heat resistant brake disc to extend the disc life and to warrant reliable braking performance has been continued. In present study, we carry out the computational fatigue analysis for thermal fatigue test in three candidate materials which were made to develop new high heat resistant material. Using FEM, we simulate thermal fatigue test in three candidate materials and conventional disc material. We then estimate the number of cycle to thermal crack initiation based on data from mechanical fatigue tests, and the results are compared with each material. For each material, the correction factor for $N_{f-40}$ which is the number of cycles when crack over $40{\mu}m$ was observed in thermal fatigue test is decided. From this study, we can verify the performance of thermal fatigue test system and suggest a qualitatively comparative method for heat resistance by FEM analysis of thermal shocking phenomenon.

  • PDF

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture (CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가)

  • Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.

Study on the local damage of SFRC with different fraction under contact blast loading

  • Zhang, Yongliang;Zhao, Kai;Li, Yongchi;Gu, Jincai;Ye, Zhongbao;Ma, Jian
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • The steel fiber reinforced concrete (SFRC) shows better performance under dynamic loading than conventional concrete in virtue of its good ductility. In this paper, a series of quasi-static experiments were carried out on the SFRC with volume fractions from 0 to 6%. The compressive strength increases by 38% while the tension strength increases by 106% when the fraction is 6.0%. The contact explosion tests were also performed on the ${\Phi}40{\times}6cm$ circular SFRC slabs of different volume fractions with 20 g RDX charges placed on their surfaces. The volume of spalling pit decreases rapidly with the increase of steel fiber fraction with a decline of 80% when the fraction is 6%, which is same as the crack density. Based on the experimental results, the fitting formulae are given, which can be used to predict individually the change tendencies of the blast crater volume, the spalling pit volume and the crack density in slabs with the increase of the steel fiber fraction. The new formulae of the thickness of damage region are established, whose predictions agree well with our test results and others. This is of great practical significance for experimental investigations and engineering applications.

Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선)

  • 신종학;하기주;최민권;전하석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF

Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame (철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;Lee, Hee-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.131-139
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of RC frame structures with masonry infilled wall, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame(IFWB-1~3), cumulated energy dissipation capacities were increased by 1.35~1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame.

  • PDF

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear wall with Connection Types and Diagonal Reinforcement (철근콘크리트 전단벽의 접합방식과 대각보강에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;An, Joon-Suk;Ju, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.139-147
    • /
    • 1999
  • Six reinforced concrete shear wall, constructured with fully rigid, slit, and infilled types, were tested under both vertical and cyclic loadings. Experimental programs were carried out to evaluate the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility, under load reversals. All the specimens were modeled in one-third scale size. Based on the test results, the following conclusions can be made. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crushing due to slippage prevention of boundary region and reduction of diagonal tension rathar than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by l.14 times and l.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF