• Title/Summary/Keyword: Crack Reduction

Search Result 428, Processing Time 0.025 seconds

Temperature and Compressive Strength of the Concrete According to the Types of Rapid Hardening Cements (조강성 시멘트 종류에 따른 콘크리트의 온도이력 및 압축강도 특성)

  • Kim, Sang-Min;Choi, Yoon-Ho;Hyun, Seung Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.100-101
    • /
    • 2020
  • In this study, the temperature history and compressive strength of the concretes according to the type of cement were measured and analyzed in comparison as part of the experiment on the material mixing side to reduce the hydration heat crack of the mat foundation constructed with mass concrete. As a result, the peak temperature and maximum temperature reach time of concrete using high rapid cement were shown to be similar to that of semi rapid cement. In particular, in compressive strength after three days, semi rapid cement was measured higher than that of concrete using high rapid cement. Therefore, if semi rapid cement is used in accordance with the site conditions, it is deemed possible to shorten the air due to reduction of temperature cracks and improvement of initial strength.

  • PDF

Effect of Grading of Coarse Aggregate on the Fundamental Properties of Concrete (굵은골재의 입도분포에 따른 콘크리트의 기초적 특성)

  • Kang, Byung-Hoi;Zhao, Yang;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.46-47
    • /
    • 2013
  • This study investigates the effect of a grading of aggregate on the properties of concrete. It is a common sense in Korea that the production of coarse aggregate in ready mixed concrete industry excludes particular aggregate size ranged from 5 mm to 13 mm for saving the production cost. This causes a gap grading of the aggregate for concrete, which can lead to the increase of unit water, the development of drying shrinkage-induced crack and the reduction of compressive strength. In this study, conventional aggregate obtained from a ready mixed concrete factory and the aggregate with a modified grading produced in lab. condition were prepared. Results showed that a good grading of aggregate (i.e., the ratio of 5~13 mm and 13~25 mm is 6 to 4) produced in the lab. condition significantly improved the slump and the compressive strength of the concrete.

  • PDF

Evaluation of Stability of CLC through Strength and Reduction of Drying Shrinkage (강도 및 건조수축 저감을 통한 CLC의 안정성 평가)

  • Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.205-206
    • /
    • 2022
  • This study intends to conduct tests on subsidence and drying shrinkage by mixing CaO-CSA expansion materials to ensure the stability of CLC, and to understand its properties. Based on CLC of 0.6, the replacement ratio of CaO-CSA expansion material was conducted at five levels compared to blast furnace slag, and the results are as follows. The replacement of CaO-CSA expansion material at an appropriate level produces ethringhite and potassium hydroxide, and it is believed that the internal voids of CLC and the Tobelmorite interlayer structure are charged to increase the structural stability, leading to an increase in compressive strength and a decrease in the drying shrinkage. However, it is judged that tissue relaxation due to excessive substances in the high replacement ratio affects the stability of CLC. In the future, we will conduct additional experiments on density, absorption rate, flow test, and settlement, and evaluate and analyze the stability of CLC by selecting the optimal replacement ratio of CaO-CSA expansion materials.

  • PDF

Concrete Specification and Mixing Design for the Reduction of Slab Defects in Underground Parking Lot (지하주차장 슬래브 하자 저감을 위한 콘크리트 규격 및 배합설계)

  • Kim, Han-Sic;Ha, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.235-236
    • /
    • 2023
  • Concrete surfaces have weak surface strength due to bleeding and laitance, and problems such as peeling, cracking, and cracking may occur. In particular, underground parking lots can be said to be more vulnerable to peeling, breaking, and cracking if excessive loading of materials and equipment movement are not managed at the initial age after placing of concrete. Cracks, peeling, and cracking problems in slab concrete in underground parking lots of apartments can lead to leakage problems and affect finishing materials constructed on top of topping concrete, reducing the performance required for waterproof materials. Therefore, in this study, the bleeding and surface strength according to the standard of topping concrete and the use of admixture were reviewed to solve the crack, peeling, and cracking problems among the types of defects in underground parking lot slab concrete. As a result, it was derived that the optimal concrete compressive strength is 30MPa or more, and it is a reasonable performance design method to prohibit the substitution of admixtures.

  • PDF

Manufacturing and Filtration Performance of Microfiltration Metal Membrane Using Rolling Process (압연공정을 이용한 금속 정밀여과막의 제조 및 여과특성)

  • Kim, Jong-Oh;Min, Seok-Hong;Jung, Jong-Tae
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.174-183
    • /
    • 2007
  • The manufacturing process of metal membrane made of only metal mesh and both metal mesh and powder with using rolling process have been studied. In the rolling of metal mesh, selected metal meshes were rolled with the reduction ratio of 10%, 20%, and 30%, respectively. Such rolling process resulted in the decrease of mesh pore size through reduction the cross sectional area of mesh and changing the diameter of mesh wires. Also, it enhanced the filtration ratio of rolled mesh which is almost same as the filtration ratio of upper grade unrolled mesh and the reliability of membrane by making pore size distribution become more uniform. In fabricating metal powder layer onto metal mesh, using PVA(polyvinyl alcohol) as a binder of powder, drying the metal powder layer at $100^{\circ}C$ for 1 hr, and sintering it at $1,000^{\circ}C$ for 3 hr in vacuum were to be optimum conditions for obtaining good quality of metal powder layer on metal mesh with high pore density but no crack. With additional rolling of metal powder layer on metal mesh with 30% reduction before sintering, metal membrane which filtration ratio is about $0.7{\mu}m$ has been successfully manufactured.

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Investigation of Fatigue Strength and Prediction of Remaining Life in the Butt Welds Containing Penetration Defects (블완전용입 맞대기 용접재의 용입깊이에 따른 피로강도특성 및 잔류수명의 산출)

  • Han, Seung Ho;Han, Jeong Woo;Shin, Byung Chun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.423-435
    • /
    • 1998
  • In this paper fatigue strength reduction of butt weld with penetration defect, which can be seen frequently in the steel bridge, was assessed quantitatively. S-N curves were derived and investigated through the constant amplitude fatigue test of fully or partially penetrated welded specimen made of SWS490 steel. The fracture mechanical method was applied in order to calculate the remaining fatigue life of the partially penetrated butt welds. The fatigue limit of the fully penetrated butt welds was higher than that of category A in AASHTO's fatigue design curves, and the slope of S-N curves with 5.57 was stiffer than that of other result for welded part generally accepted as 3. The fatigue strength of the partially Penetrated butt weld was strongly influenced by the size of lack of penetration, D. It decreased drastically with increasing D from 3.9 to 14.7mm. Fracture behaviour of the partially penetrated butt weld is able to be explained obviously from the beach mark test that a semi-elliptical surface crack with small a/c ratio initiates at a internal weld root and propagates through the weld metal. To estimate the fatigue life of the partially penetrated butt weld with fracture mechanics, stress intensity factors K of 3-dimensional semi-elliptical crack were calculated by appling finite elements method and fracture mechanics parameters such as C and m were derived through the fatigue test of CT-specimen. As a result, the fatigue lives obtained by using the fracture mechanical method agreed well with the experimental results. The results were applied to Sung-Su bridge collapsed due to penetration defects in butt weld of vertical member.

  • PDF

FE Analysis of the Composite Action in the Composite Beam subjected to the Hogging Moment (부모멘트를 받는 합성보의 전단합성 거동에 대한 유한요소해석)

  • Shin, Hyun-Seop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4048-4057
    • /
    • 2013
  • In the composite beam subjected to the hogging moment it is very difficult to evaluate the influence of the reduction of slab stiffness due to cracks and their development on the horizontal shear behavior of shear connection. In this study, a 3D FE model is developed by which one can analyze the composite action in the composite beam subjected to the hogging moment. In this FE model, each structural member and shear connection are modeled as similar as possible to details of the composite beam. Bending behaviour, and composite action which could not be analyzed using the existing 1D or 2D FE model are investigated by the 3D model. Analysis results show that the reinforcement ratio and crack behaviour of the slab are main factors which exert a strong influence on the composite action. According to the analysis results about load-slip behavior, initial crack of slab and yielding of rebars have a influence on the slip stiffness of shear connection. The existing experimental results, that the design of partial interaction can be more efficient in designing of shear connection of the composite beams, are indirectly verified by the FE analysis.

A Study on Characterization of Expansion Agent in Mortar with Light Burned Dolomite By-Product (경소백운석(輕燒白雲石) 부산물(副産物)을 활용(活用)한 바닥 몰탈용 팽창재(膨脹材)의 특성검토(特性檢討))

  • Lee, Keon-Ho;Min, Sung-Eoi;Lee, Hyoung-Woo;Cho, Jin-Sang;Cho, Kye-Hong;Han, Choon
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.12-22
    • /
    • 2012
  • This study investigated a utilization technology of light burned dolomite. light burned dolomite ($CaMg(CO_3)_2$) generated in furnace (steel manufacturer) is an alternative to quick lime. Using light burned dolomite has an effect on reducing the consumption of fluorite slag MgO concentration in supersaturated solution by prolonging the life of softening effect. Armophous MgO, not containing periclase is formed by firing dolomite under $800^{\circ}C$. It has larger surface area and higher reactivity than periclase, and also shows better expansion effect than quicklime. Due to those effects, therefore, armophous MgO produced from light burned dolomite is used as an alternative expansion agent in mortar. In the experiment, characteristics of light burned dolomite were compared to those of existing expansion agents such as anhydrite and quicklime. Then, each expansion and shrinkage rates were measured over a period of about 3 months in both of 1m Jis mold at labscale and apartment mortar flooring at field scale. In the result, it was observed that light burned dolomite in mortar flooring more compensates for the expansion and shrinkage rates than the existing expansion agents, showing low expansion rate of below 0.05% and also decreases the crack.

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.