• Title/Summary/Keyword: Crack Propagation Angle

Search Result 126, Processing Time 0.023 seconds

Elasto-Plastic Analysis for J-integral Evaluation of Unstable Fracture in Cracked Ductile Materials (균열재(龜裂材)의 불안정연성파괴(不安定延性破壞)에 대한 J 적분(J積分) 평가(評價)를 위한 탄소성해석(彈塑性解析))

  • Chang, Dong Il;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 1987
  • It is the objective of this study to estimate J-integral by numerical analysis, in which J-integral as aparameters in fracture mechanics can be used to evaluate unstable ductile fracture which is a important problem with respect to structural stability when the scope is beyond small scale yielding criteria. For this, 8-node isoparametric singular element as crack tip element of a cracked material was used to solve plastic blunting phenomenon at crack tip, and crack opening was forced to start when J-value was exceeding fracture toughness $J_{IC}$ of the material. And crack propagation behaviour was treated by using crack opening angle. From this study, it was shown that crack opening, stable propagation and unstable opening point of the cracked material found by using J-value obtained from this study were accord with the other study, so think, J-value obtained from this study can be directly used as a parameter in fracture mechanics to deal with the problem of stable propagation of crack and unstable ductile fracture.

  • PDF

Ambiguity of Minimum Strain Energy Density Criterion and Maximum Minimum Strain Energy Density Criterion (최소 변형에너지 밀도 기준의 모호성과 최대 극소 변형에너지 밀도 기준)

  • Gu, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1155-1162
    • /
    • 2001
  • Sihs minimum strain energy density criterion(SED) often used in the mixed mode problem has the ambiguity of the choice of minimum values. In this paper, as the method to solve the problem of SED, maximum minimum strain energy density criterion is proposed that the crack propagates in the direction of having the maximum among the minimum values of modified strain energy density factor(MS), i.e., sign($\sigma$(sub)$\theta$).Smin.

The Relationship between Fiber Stacking Angle and Delamination Growth of the Hybrid Composite Material on an Aircraft Main Wing (항공기 주익용 하이브리드 복합재의 섬유배향각과 층간분리 성장과의 관계)

  • 송삼홍;김철웅;김태수;황진우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1402-1405
    • /
    • 2003
  • The main object of this study was evaluated by the delamination damage for fiber stacking angle. Therefore, this work need to compare the shape of delamination for a different fiber stacking angie. So this study uses a method of fatigue test which was created [0]$_2$,[+45]$_2$[90]$_2$. The extension of the delamination zone formed between aluminium alloy and glass fiber-adhesive layer were measured by an ultrasonic C-scan image. As a result, the shapes of delamination zone don't depend upon the crack propagation. We could know that the delamination zone grew interaction between stress flow of fiber layer and crack driving force. Hence, the existing study were applied to the stress transfer, fiber bridging effect, delaminantion growth rate should need to the develop useful factor because of change of fiber stacking angle.

  • PDF

A Study on Mixed Mode Crack Initiation under Static Loading Condition

  • Koo, Jea-Mean
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, several different fracture criteria using the Eftis and Subramanian's stress solutions [1] are compared with the printed experimental results under different loading conditions. The analytical results of using the solution with non-singular term show better than without non-singular in comparison with the experimental data. And maximum tangential stress criterion (MTS) and maximum tangential strain energy density criterion (MTSE) can get useful results for several loading conditions.

Analysis of small surface crack growth of round bar under rotary bending stress (회전굽힘응력하에서 환봉재의 미소표면균열의 성장거동해석)

  • Oh, Hwan-Seop;Lee, Byeong-Gwon;Park, Cheol-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.160-169
    • /
    • 1998
  • The purpose of this study for the prediction of fatigue crack propagation behavior, Stress Intensity Factor(F) of round bar with 3-Dimensional half circular, semi-elliptical icro surface crack under rotary bending stress for the variable aspect, size, rotation angle was analyzed by Boundary Element Method (BEM). It is predicted that behavior of crack growth is half circular or circular crack (b/a.geq.1) and propagate to b/a.leq.0.85.

Numerical study of rock mechanical and fracture property based on CT images

  • Xiao, Nan;Luo, Li-Cheng;Huang, Fu;Ling, Tong-Hua
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.395-407
    • /
    • 2022
  • In this paper, cracks with different angles are prefabricated in rock specimens to study the fracture characteristics of rock based on CT images. The rock specimens are prepared for compression tests according to the standard recommended by ISRM (International Society for Rock Mechanics). The effects of different angles on rock mechanical properties and crack propagation fracture modes are analyzed. Then, based on the cohesive element method and CT images, the relationship between porosity and Young's modulus as well as the fracture property is explored by the numerical modelling. In the modelling, the distribution of Young's modulus is determined by the CT image through the field variable method. The results show that prefabricated cracks reduce the mechanical properties of rock. The closer the angles of the prefabricated crack is, the greater the Young's modulus of the rock sample is. The failure process of each specimen with prefabricated cracks is formed by the initiation and propagation of crack, and the angle of the prefabricated crack will affect the type of extended crack. As part of the numerical model proposed in this paper, the microstructure of rocks is reflected by CT images. The numerical results verify the effectiveness of the cohesive element method in the study of crack propagation for rock. The rock model in this paper can be used to predict engineering disasters such as collapse and landslide caused by rock fracture, which means that the methodology adopted in this paper is comprehensive and important to solve rock engineering problems.

Yield and Fracture of Paper

  • Park, Jong-moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.57-72
    • /
    • 1999
  • Traditional theories of the tensile failure of paper have assumed that uniform strain progresses throughout the sheet until an imperfection within the structure causes a catastrophic break. The resistance to tensile elongation is assumed to be elastic , at first, throughout the structure, followed by an overall plastic yield. However, linear image strain analysis (LISA) has demonstrated that the yield in tensile loading of paper is quite non-uniform throughout the structure, Traditional theories have failed to define the flaws that trigger catastrophic failure. It was assumed that a shive or perhaps a low basis weight area filled that role. Studies of the fracture mechanics of paper have typically utilized a well-defined flaw around which yield and failure could be examined . The flaw was a simple razor cut normal to the direction of tensile loading. Such testing is labeled mode I analysis. The included fla in the paper was always normal to the tensile loading direction, never at another orientation . However, shives or low basis weight zones are likely to be at random angular orientations in the sheet. The effects of angular flaws within the tensile test were examined. The strain energy density theory and experimental work demonstrate the change in crack propagation from mode I to mode IIas the initial flaw angle of crack propagation as a function of the initial flaw angle is predicted and experimentally demonstrated.

  • PDF

Experimental study of crack propagation of rock-like specimens containing conjugate fractures

  • Sun, Wenbin;Du, Houqian;Zhou, Fei;Shao, Jianli
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.323-331
    • /
    • 2019
  • The presence of defects in nature changes the physical parameters of the rock. In this paper, by studying the rock-like specimens with conjugated fractures, the horizontal angle and length are changed, and the physical parameters and failure modes of the specimens under uniaxial compression test are analyzed and compared with the results of simulation analysis. The experimental results show that the peak strength and failure mode of the rock-like specimens are closely related to the horizontal angle. When the horizontal angle is $45^{\circ}$, the maximum value is reached and the tensile failure mode is obtained. The fracture length affects the germination and propagation path of the cracks. It is of great significance to study the failure modes and mechanical properties of conjugated fracture rock-like specimens to guide the support of fractured rock on site.

Strain-rate effects on interaction between Mode I matrix crack and inclined elliptic inclusion under dynamic loadings

  • Li, Ying;Qiu, Wan-Chao;Ou, Zhuo-Cheng;Duan, Zhuo-Ping;Huang, Feng-Lei
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.801-814
    • /
    • 2012
  • The strain rate effects on the interaction between a Mode I matrix crack and an inclined elliptic matrix-inclusion interface under dynamic tensile loadings were investigated numerically, and the results are in agreement with previous experimental data. It is found, for a given material system, that there are the first and the second critical strain rates, by which three kinds of the subsequent crack growth patterns can be classified in turn with the increasing strain rate, namely, the crack deflection, the double crack mode and the perpendicular crack penetration. Moreover, such a crack deflection/penetration behavior is found to be dependent on the relative interfacial strength, the inclined angle and the inclusion size. In addition, it is shown that the so-called strain rate effect on the dynamic strength of granule composites can be induced directly from the structural dynamic response of materials, not be entirely an intrinsic material property.

Study on Crack Propagation of Concrete beam under Mixed-Mode Loading by Minimum Strain Energy Density Failure Criterion (최소 변형 에너지 밀도 기준에 의한 콘크리트 보의 균열전파에 관한 연구)

  • 진치섭;이영호;신동익;오정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.529-534
    • /
    • 1998
  • To find out an adequate failure criterion in two-dimensional linear elastic crack problems, finite element programs, SED, which determine stress intensity factors $K_I, K_{II}$, crack angle and peak load by the minimum strain energy density failure criterion were developed. In this program, the conventional quadratic isoparametric elements were used in all regions except the crack tip zone where triangular singular elements with 6 nodes were used. The results of SED were compared with the results of those which followed by the maximum circumferential tensile stress criteria and those by the maximum energy release rate criteria and those by Jenq and Shah`s experiments of the same geometry and material properties. The maximum energy release rate criteria were better close to those of the Jenq and Shah`s experiments than the maximum circumferential tensile stress criteria and the minimum strain energy density criteria.

  • PDF