• Title/Summary/Keyword: Crack Path

Search Result 230, Processing Time 0.025 seconds

Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on The Pad Geometry (패드 구조에 따른 Sn-Ag-Cu계 무연 솔더볼 접합부의 기계적 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of PCB and BGA pad designs was investigated on the mechanical property of Pb-free solder joints. The mechanical property of solder joint was tested by three different test methods of drop impact tests, bending impact test, and high speed shear test. Two kinds of pad design such as NSMD (Non-Solder Mask Defined) and SMD (Solder Mask Defined) were applied with the OSP finished Pb-free solder (Sn-3.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu). in the drop impact test and bending impact test, the characterized lifetime showed the same tendency, and SMD design showed better mechanical property of solder joint than NSMD regardless of test method, which was due to the different crack path. The fracture crack on SMD pad was propagated along the intermetallic compound (IMC) layer of solder joint, while the fracture crack on NSMD pad propagated through upper edge of land which shields pattern. In the high speed shear test, pad lift occurred on the solder joint of NSMD. SMD/SMD combination of pad design consequently illustrated the best mechanical property of BGA/PCB solder joint, followed by SMD/NSMD, NSMD/SMD, and NSMD/NSMD.

Microstructure and Fracture Toughness of 7175Al Heavy Forgings (7175Al 대형 단조재의 미세조직과 파괴인성)

  • Lee, O.Y.;Jang, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.2
    • /
    • pp.89-95
    • /
    • 2001
  • The 7175Al alloy is particularly interesting for its high strength and sufficient ductility, fracture toughness and corrosion resistance. Currently vigorous efforts have been made to develop large rockets usable for various purposes in the space. This has created the demand of big size of 7175Al billet which would be applied to heavy forgings. The aim of this study is to investigate the quality level of big billet and the effect of billet size on the mechanical properties of large 7175Al ring roll forgings. The billets range from 370 mm to 720 mm in diameter were homogenized and forged after direct chill casting. The size and volume fraction of second phase particles In ${\Phi}720$ mm billet are larger than those of ${\Phi}370$ mm billet, and its ductility is lower for the condition of homogenization and T6 treatment. The Cu-rich phases formed in interdendritic sites are considered to provide the preferential crack path during cold upsetting. The fracture toughness of ring roll forgings which are made by ${\Phi}370$ mm billet is higher than those of ${\Phi}720$ mm billet.

  • PDF

Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment Using J-integral (J-적분을 이용한 후판 부분용입 다층용접재의 파괴 해석)

  • Kim, Seok;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.300-307
    • /
    • 2002
  • Partial penetration welding joint is defined as groove welds welded from one side, without steel backing or groove welds welded from both sides but without back gouging. So it has an unwelded portion at the root of the weld. Study of partial penetration weldment fracture behavior includes residual stress analysis and fracture analysis. The J-integral loses its path independency in residual stress field. Therefore, it is necessary to introduce a new J-integral, J, which is defined including the effect of plastic deformation and thermal strain. In this study, theoretical formulation and program were developed for the evaluation of J-integral for the crack tip located in the weldment. Evaluations of fracture behavior were performed for partial penetration multi-pass weldment of 25.4mm thick plate by J-integral. From a point of fracture in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

A Study on the Cross-drilling Effects of Brake Disc Rotor (브레이크 디스크 로터 표면 수직 구멍의 영향에 관한 연구)

  • Seo, Young-Jin;Oh, Je-Ha;Lee, Jun-Sang;Kang, Kyoung-Soo;Jung, Geun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.100-105
    • /
    • 2008
  • Cross-drilling on the brake disc is generally known as a way of improving cooling efficiency. In other theories, cross-drilled holes act like a path of gas or water and are also known that they can reduce fading and wetting of brake rotors. However, in disc rotors with cross-drilling, thermal crack phenomena have been reported more frequently and more manufacturing cost should be paid than non cross-drilled disc rotors. In this study, to examine various effects of cross-drilling on the brake disc, two kinds of brake disc rotors, cross-drilled and non cross-drilled, were used in computational fluid dynamic analyses and dynamometer tests.

The Effects of PPF Fiber on Pore Structure of Concrete (PPF 섬유의 첨가가 콘크리트의 공극구조에 미치는 영향)

  • Han, Man Yop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1081-1089
    • /
    • 1994
  • Polypropylene Fibers have been used to increase the toughness of concrete and to increase the resistance to crack formation. However, there are many contradictory argument about the effectiveness of the fiber due to the lack of knowledge about the mechanism of fiber in concrete. One of the mechanism which changes the concrete properties on the addition of fiber is the change of the micropore structures. In this study, the change of pore structure due to the addition of fiber has been analysized by a permeability and a pore size distributuion test. The added fiber is found to provide a path for moisture movement, which increases drying shrinkage and pore size. It is found that the size of pores formed around the fiber ranges from $0.05{\mu}m$ to $5.0{\mu}m$.

  • PDF

The effect of welding parameters on the formation of discontinuities in the laser fusion zone between Fe-Co-W sintered segment and mild steel (Fe-Co-W 소결체와 탄소강의 레이저 용융부 결함형성에 미치는 공정변수의 영향)

  • Kim S. W.;Yoon B. H.;Jung W. G.;Lee C. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.25-36
    • /
    • 2004
  • This study was performed to clarification of the formation of weld discontinuities in the dissimilar laser fusion zone. Welding parameters were beam power of 1300, 1430, 1560, and 1700 W and travel speed of 1, 1.3, and 1.7 m/min. Most cavities in the fusion zone were observed near the tip. Cavities in the fusion zone observed to be formed and grown from pores in the tip. More cavities were formed as the beam position moves to the tip side. Small cavities were decreased but large cavities were increased when the energy input increased. W content in the fusion zone was increased with heat input and as the beam position close to the tip. In the fusion zone, W content in the dendrite boundary was increased with heat input. Considering the propagation path and fracture morphology, cracks were solidification cracking, and were initiated and propagated along the dendrite boundaries. The formation of cracks might be related with the W rich ${\mu}$ phase which was formed in the grain boundaries and dendrite boundaries.

  • PDF

After-fracture redundancy in simple span two-girder steel bridge

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.651-670
    • /
    • 2007
  • An experimental study to evaluate a redundancy capacity in simple span two plate-girder bridges, which are generally classified as a non-redundant load path structure, has been performed under the condition that one of the two girders is seriously damaged. The bottom lateral bracing was selected as an experimental parameter and two 1/5-scale bridge specimens with and without bottom lateral bracing have been prepared. The loading tests were first performed on the intact specimens without cracked girder within elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and concrete deck redistributed partly the applied load to the uncracked girder, but the lateral bracing system played a significant role of the load redistribution when a girder was damaged. The redundancy was evaluated based on the test results and an appropriate redundancy level was evaluated when the lateral bracing was provided in a seriously damaged simple span two-girder steel bridge.

Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes (비자성체 이중관의 원격장 에너지 전달 경로)

  • Yi, Jae-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.526-531
    • /
    • 2001
  • The flow of remote field eddy current energy is studied at nonmagnetic coaxial tubes by using both experiments and finite element calculations based on commercial software package. The results showed that remote field eddy current energy at coaxial tubes flow along over the outer surface of external tube, not through the gap between internal and external tubes. This means that the through wall transmission characteristic of remote field eddy current testing (RFECT) is still valid at tube in tube configurations and the RFECT could be potential nondestructive technique for crack detection, spacer location and gap sizing at the coaxial CANDU fuel channel tubes.

  • PDF

Effect of Cd addition on the Fatigue Properties of Al-Cu-Mn cast alloy (Al-Cu-Mn 주조합금의 피로성질에 미치는 Cd 첨가의 영향)

  • Kim, Gyeong-Hyeon;Lee, Byeong-Hun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • Effect of Cd addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. With increasing Cd content, fatigue life and tensile strength were increased. It was found that the fatigue strength was 115MPa and the fatigue ratio was 0.31. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in the Cd-free Al-Cu- Mn cast alloy to 401MPa in the 0.15%Cd-containing alloy.

  • PDF

Effect of Scrap Content on the Impact Property and Fatigue Property of AC4A Alloy (AC4A 합금의 충격특성 및 피로특성에 미치는 스크랩 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.187-194
    • /
    • 2016
  • The effects of scrap content on the impact and fatigue properties were investigated in AC4A alloy. The impact absorbed energy of as-cast specimens were 3.61, 3.56, 3.47, and 3.08 Joules, respectively, when scrap contents of the specimens were 0, 20, 35, and 50%. And, the corresponding energy levels of the T6 heat-treated condition were 3.66, 3.48, 3.25, and 2.96 Joule. In the same way, the fatigue strength values of the as-cast specimens were 53.2, 52.0, 48.4, and 43.8MPa, respectively, and the corresponding fatigue strengths of the T6 heat-treatment specimens were 85.4, 75.7, 60.6, and 51.2 MPa. Impact absorbed energy and fatigue strength decreased as scrap content of the specimen increased. It is assumed that impact absorbed energy decreased owing to the presence of oxide films, which act as branches of 2nd cracks; fatigue strength also decreased with decreased deflection of the fatigue crack path as the scrap content of the specimens increased.